10T SRAM Computing-in-Memory Macros for Binary and Multibit MAC Operation of DNN Edge Processors

Van Truong Nguyen, Jie Seok Kim, Jong Wook Lee

Research output: Contribution to journalArticlepeer-review

Abstract

Computing-in-memory (CIM) is a promising approach to reduce latency and improve the energy efficiency of the multiply-and-accumulate (MAC) operation under a memory wall constraint for artificial intelligence (AI) edge processors. This paper proposes an approach focusing on scalable CIM designs using a new ten-transistor (10T) static random access memory (SRAM) bit-cell. Using the proposed 10T SRAM bit-cell, we present two SRAM-based CIM (SRAM-CIM) macros supporting multibit and binary MAC operations. The first design achieves fully parallel computing and high throughput using 32 parallel binary MAC operations. Advanced circuit techniques such as an input-dependent dynamic reference generator and an input-boosted sense amplifier are presented. Fabricated in 28 nm CMOS process, this design achieves 409.6 GOPS throughput, 1001.7 TOPS/W energy efficiency, and a 169.9 TOPS/mm2 throughput area efficiency. The proposed approach effectively solves previous problems such as writing disturb, throughput, and the power consumption of an analog to digital converter (ADC). The second design supports multibit MAC operation (4-b weight, 4-b input, and 8-b output) to increase the inference accuracy. We propose an architecture that divides 4-b weight and 4-b input multiplication to four 2-b multiplication in parallel, which increases the signal margin by $16\times $ compared to conventional 4-b multiplication. Besides, the capacitive digital-to-analog converter (CDAC) area issue is effectively addressed using the intrinsic bit-line capacitance existing in the SRAM-CIM architecture. The proposed approach of realizing four 2-b parallel multiplication using the CDAC is successfully demonstrated with a modified LeNet-5 neural network. These results demonstrate that the proposed 10T bit-cell is promising for realizing robust and scalable SRAM-CIM designs, which is essential for realizing fully parallel edge computing.

Original languageEnglish
Article number9429249
Pages (from-to)71262-71276
Number of pages15
JournalIEEE Access
Volume9
DOIs
Publication statusPublished - 2021

Keywords

  • Computing-in-memory
  • deep neural network
  • edge processor
  • machine learning
  • static random access memory

Fingerprint

Dive into the research topics of '10T SRAM Computing-in-Memory Macros for Binary and Multibit MAC Operation of DNN Edge Processors'. Together they form a unique fingerprint.

Cite this