TY - JOUR
T1 - A review on iron oxide-based nanoarchitectures for biomedical, energy storage, and environmental applications
AU - Tanaka, Shunsuke
AU - Kaneti, Yusuf Valentino
AU - Septiani, Ni Luh Wulan
AU - Dou, Shi Xue
AU - Bando, Yoshio
AU - Hossain, Md Shahriar A.
AU - Kim, Jeonghun
AU - Yamauchi, Yusuke
N1 - Publisher Copyright:
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
PY - 2019/5
Y1 - 2019/5
N2 - Iron oxide nanoarchitectures with distinct morphologies from 1D to 3D have been developed using various wet chemical methods. They have been employed for a wide range of applications, including energy storage, biomedical, and environmental applications. The functional properties of iron oxide nanoarchitectures depend on the size, shape, composition, magnetic properties, and surface modification. To overcome the limitations of pure iron oxide nanostructures, hybridizations with various inorganic materials (e.g., silica, metals, metal oxides) and carbon-based materials have been proposed. Herein, the recent advances in the preparation of various iron oxide nanoarchitectures are reviewed along with their functional applications in energy storage, biomedical, and environmental fields. Finally, the effects of various parameters on the functional performance of iron oxide nanostructures for these applications are summarized and the trends and future outlook on the development of iron oxide nanoarchitectures for these applications are also given.
AB - Iron oxide nanoarchitectures with distinct morphologies from 1D to 3D have been developed using various wet chemical methods. They have been employed for a wide range of applications, including energy storage, biomedical, and environmental applications. The functional properties of iron oxide nanoarchitectures depend on the size, shape, composition, magnetic properties, and surface modification. To overcome the limitations of pure iron oxide nanostructures, hybridizations with various inorganic materials (e.g., silica, metals, metal oxides) and carbon-based materials have been proposed. Herein, the recent advances in the preparation of various iron oxide nanoarchitectures are reviewed along with their functional applications in energy storage, biomedical, and environmental fields. Finally, the effects of various parameters on the functional performance of iron oxide nanostructures for these applications are summarized and the trends and future outlook on the development of iron oxide nanoarchitectures for these applications are also given.
KW - Biomedical applications
KW - Catalysis
KW - Energy storage
KW - Iron oxide nanoparticles
KW - Surface modification
UR - http://www.scopus.com/inward/record.url?scp=85075085046&partnerID=8YFLogxK
U2 - 10.1002/smtd.201800512
DO - 10.1002/smtd.201800512
M3 - Review article
AN - SCOPUS:85075085046
SN - 2366-9608
VL - 3
JO - Small Methods
JF - Small Methods
IS - 5
M1 - 1800512
ER -