A smooth contact algorithm using cubic spline surface interpolation for rigid and flexible bodies

Juhwan Choi, Jin Hwan Choi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

The contact analysis of multi-flexible-body dynamics (MFBD) has been an important issue in the area of computational dynamics because the realistic dynamic analysis of many mechanical systems includes the contacts among rigid and flexible bodies. But, until now, the contact analysis in the multi-flexible-body dynamics has still remained as a big, challenging area. Especially, the most of contact algorithms have been developed based on the facetted triangles. As a result, the contact force based on the facetted surface was not accurate and smooth because the geometrical error is already included in the contact surface representation stage. This kind of error can be very important in the precise mechanism such as gear contact or cam-valve contact problems. In order to resolve this problem, this study suggests a cubic spline surface representation method and related contact algorithms. The proposed contact algorithms are using the compliant contact force model based on the Hertzian contact theory. In order to evaluate the smooth contact force, the penetration depth and contact normal directions are evaluated by using the cubic spline surface interpolation. Also, for the robust and efficient contact algorithm development, the contact algorithms are divided into four main parts which are a surface representation, a pre-search, a detailed search and a contact force generation. In the surface representation part, we propose a smooth surface representation method which can be used for smooth rigid and flexible bodies. In the pre-search, the algorithm performs collision detection and composes the expected contact pairs for the detailed search. In the detailed search, the penetration depth and contact reference frame are calculated with the cubic spline surface interpolation in order to generate the accurate and smooth contact force. Finally in the contact force generation part, we evaluate the contact force and Jacobian matrix for the implicit time integrator.

Original languageEnglish
Title of host publication9th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
PublisherAmerican Society of Mechanical Engineers
ISBN (Print)9780791855966
DOIs
Publication statusPublished - 2013
EventASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2013 - Portland, OR, United States
Duration: 4 Aug 20137 Aug 2013

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume7 A

Conference

ConferenceASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2013
Country/TerritoryUnited States
CityPortland, OR
Period4/08/137/08/13

Fingerprint

Dive into the research topics of 'A smooth contact algorithm using cubic spline surface interpolation for rigid and flexible bodies'. Together they form a unique fingerprint.

Cite this