TY - JOUR
T1 - Accuracy of heart rate measured by military-grade wearable ECG monitor compared with reference and commercial monitors
AU - Lindsey, Bryndan
AU - Hanley, C.
AU - Reider, L.
AU - Snyder, S.
AU - Zhou, Y.
AU - Bell, E.
AU - Shim, J.
AU - Hahn, J. O.
AU - Vignos, M.
AU - Bar-Kochba, E.
N1 - Publisher Copyright:
© Author(s) (or their employer(s)) 2023. No commercial re-use. See rights and permissions. Published by BMJ.
PY - 2023
Y1 - 2023
N2 - Introduction: Physiological monitoring of soldiers can indicate combat readiness and performance. Despite demonstrated use of wearable devices for HR monitoring, commercial options lack desired military features. A newly developed OMNI monitor includes desired features such as long-range secure data transmission. This study investigated the accuracy of the OMNI to measure HR via accuracy of R-R interval duration relative to research-grade ECG and commercial products. Methods: 54 healthy individuals (male/female=37/17, age=22.2±3.6 years, height=173.0±9.1 cm, weight=70.1±11.2 kg) completed a submaximal exercise test while wearing a reference ECG (Biopac) and a randomly assigned chest-based monitor (OMNI, Polar H10, Equivital EQ-02, Zephyr Bioharness 3). All participants also wore two wrist-based photoplethysmography (PPG) devices, Garmin fÄ "nix 6 and Empatica E4. Bland-Altman analyses of agreement, concordance correlation coefficient (CCC) and root-mean-squared error (RMSE) were used to determine accuracy of the OMNI and commercial devices relative to Biopac. Additionally, a linear mixed-effects model evaluated the effects of device and exercise intensity on agreement. Results: Chest-based devices showed superior agreement with Biopac for measuring R-R interval compared with wrist-based ones in terms of mean bias, CCC and RMSE, with OMNI demonstrating the best scores on all metrics. Linear mixed-effects model showed no significant main or interaction effects for the chest-based devices. However, significant effects were found for Garmin and Empatica devices (p<0.001) as well as the interaction effects between both Garmin and Empatica and exercise intensity (p<0.001). Conclusions: Chest-based ECG devices are preferred to wrist-based PPG devices due to superior HR accuracy over a range of exercise intensities, with the OMNI device demonstrating equal, if not superior, performance to other commercial ECG monitors. Additionally, wrist-based PPG devices are significantly affected by exercise intensity as they underestimate HR at low intensities and overestimate HR at high intensities.
AB - Introduction: Physiological monitoring of soldiers can indicate combat readiness and performance. Despite demonstrated use of wearable devices for HR monitoring, commercial options lack desired military features. A newly developed OMNI monitor includes desired features such as long-range secure data transmission. This study investigated the accuracy of the OMNI to measure HR via accuracy of R-R interval duration relative to research-grade ECG and commercial products. Methods: 54 healthy individuals (male/female=37/17, age=22.2±3.6 years, height=173.0±9.1 cm, weight=70.1±11.2 kg) completed a submaximal exercise test while wearing a reference ECG (Biopac) and a randomly assigned chest-based monitor (OMNI, Polar H10, Equivital EQ-02, Zephyr Bioharness 3). All participants also wore two wrist-based photoplethysmography (PPG) devices, Garmin fÄ "nix 6 and Empatica E4. Bland-Altman analyses of agreement, concordance correlation coefficient (CCC) and root-mean-squared error (RMSE) were used to determine accuracy of the OMNI and commercial devices relative to Biopac. Additionally, a linear mixed-effects model evaluated the effects of device and exercise intensity on agreement. Results: Chest-based devices showed superior agreement with Biopac for measuring R-R interval compared with wrist-based ones in terms of mean bias, CCC and RMSE, with OMNI demonstrating the best scores on all metrics. Linear mixed-effects model showed no significant main or interaction effects for the chest-based devices. However, significant effects were found for Garmin and Empatica devices (p<0.001) as well as the interaction effects between both Garmin and Empatica and exercise intensity (p<0.001). Conclusions: Chest-based ECG devices are preferred to wrist-based PPG devices due to superior HR accuracy over a range of exercise intensities, with the OMNI device demonstrating equal, if not superior, performance to other commercial ECG monitors. Additionally, wrist-based PPG devices are significantly affected by exercise intensity as they underestimate HR at low intensities and overestimate HR at high intensities.
KW - CARDIOLOGY
KW - Health informatics
KW - Pacing & electrophysiology
KW - SPORTS MEDICINE
UR - http://www.scopus.com/inward/record.url?scp=85178426768&partnerID=8YFLogxK
U2 - 10.1136/military-2023-002541
DO - 10.1136/military-2023-002541
M3 - Article
AN - SCOPUS:85178426768
SN - 2633-3767
JO - BMJ Military Health
JF - BMJ Military Health
M1 - 002541
ER -