TY - JOUR
T1 - Amine-bilayer-functionalized cellulose-chitosan composite hydrogel for the efficient uptake of hazardous metal cations and catalysis in polluted water
AU - Godiya, Chirag Batukbhai
AU - Revadekar, Chetan
AU - Kim, Jinsoo
AU - Park, Bum Jun
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2022/8/15
Y1 - 2022/8/15
N2 - Herein, we represent a novel ecofriendly bilayer-amine group incorporated microcrystalline cellulose (MCC)/chitosan (CS) hydrogel, fabricated via integrating polydopamine (PDA) and polyethyleneimine (PEI) for reliable and effective extraction of copper (Cu2+), zinc (Zn2+), and nickel (Ni2+) ions from effluents. Owing to abundant adsorptive sites, the MCC-PDA-PEI/CS-PDA-PEI hydrogel showed excellent Cu2+, Zn2+, and Ni2+ adsorbabilities of ~434.8, ~277.7, and ~261.8 mg/g, respectively, in a single-ion adsorption system with the adsorption kinetics and isotherm complied with pseudo-second-order and Langmuir models, respectively. In a multi-ion adsorption system, hydrogel removes mixed metal cations with slightly higher selectivity for Cu2+. In accordance with X-ray photoelectron and Fourier-transform-infrared spectrometric analyses, a plausible binding mechanism of metal cations on the as-prepared hydrogel was proposed by chelation between hydrogel functional groups and metal ions. In the repetitive adsorption/desorption experiments, the hydrogel retained >40% metal ion adsorption and desorption capacities after four cycles. Furthermore, the Cu2+-adsorbing hydrogel could serve as a support for the in situ development of Cu nanoparticles, which showed excellent catalytic performance as demonstrated by the transformation of 4-nitrophenol (4-NP) to 4-aminophenol. This work provides a novel ecofriendly, reusable, and highly-efficient adsorbent, as well as a biocatalyst for remediation of heavy metal cations and 4-NP polluted effluents.
AB - Herein, we represent a novel ecofriendly bilayer-amine group incorporated microcrystalline cellulose (MCC)/chitosan (CS) hydrogel, fabricated via integrating polydopamine (PDA) and polyethyleneimine (PEI) for reliable and effective extraction of copper (Cu2+), zinc (Zn2+), and nickel (Ni2+) ions from effluents. Owing to abundant adsorptive sites, the MCC-PDA-PEI/CS-PDA-PEI hydrogel showed excellent Cu2+, Zn2+, and Ni2+ adsorbabilities of ~434.8, ~277.7, and ~261.8 mg/g, respectively, in a single-ion adsorption system with the adsorption kinetics and isotherm complied with pseudo-second-order and Langmuir models, respectively. In a multi-ion adsorption system, hydrogel removes mixed metal cations with slightly higher selectivity for Cu2+. In accordance with X-ray photoelectron and Fourier-transform-infrared spectrometric analyses, a plausible binding mechanism of metal cations on the as-prepared hydrogel was proposed by chelation between hydrogel functional groups and metal ions. In the repetitive adsorption/desorption experiments, the hydrogel retained >40% metal ion adsorption and desorption capacities after four cycles. Furthermore, the Cu2+-adsorbing hydrogel could serve as a support for the in situ development of Cu nanoparticles, which showed excellent catalytic performance as demonstrated by the transformation of 4-nitrophenol (4-NP) to 4-aminophenol. This work provides a novel ecofriendly, reusable, and highly-efficient adsorbent, as well as a biocatalyst for remediation of heavy metal cations and 4-NP polluted effluents.
KW - 4-nitrophenol hydrogenation
KW - Adsorptive removal
KW - Amine-bilayer-functionalized hydrogel
KW - Catalysis
KW - Toxic metallic ions
UR - http://www.scopus.com/inward/record.url?scp=85130322629&partnerID=8YFLogxK
U2 - 10.1016/j.jhazmat.2022.129112
DO - 10.1016/j.jhazmat.2022.129112
M3 - Article
C2 - 35605498
AN - SCOPUS:85130322629
SN - 0304-3894
VL - 436
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
M1 - 129112
ER -