TY - JOUR
T1 - An efficient and eco-friendly approach for the sustainable recovery and properties characterization of polyhydroxyalkanoates produced by methanotrophs
AU - Tran, My Ha
AU - Choi, Tae Rim
AU - Yang, Yung Hun
AU - Lee, Ok Kyung
AU - Lee, Eun Yeol
N1 - Publisher Copyright:
© 2023
PY - 2024/2
Y1 - 2024/2
N2 - Synthetic biodegradable and bio-based polymers have emerged as sustainable alternatives to nonrenewable petroleum-derived polymers which cause serious environmental issues. In particular, polyhydroxyalkanoates (PHA) are promising biopolymers owing to their outstanding biodegradability and biocompatibility. The production of the homopolymer poly(3-hydroxybutyrate) (PHB) and copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from type II methanotrophs via microbial fermentation was presented. For the efficient extraction and recovery of intracellular PHA from methanotrophs, different extraction approaches were investigated including solvent extraction using 1,3-dioxolane as a green solvent, integrated cell lysis and solvent extraction, and cell digestion without the use of organic solvents. Among various extraction approaches, the integrated method exhibited the highest extraction performance, with PHA recovery and purity exceeding 91 % and 93 %, respectively, even when the PHA content of the cells was low. Furthermore, the molecular weight, thermal stability, and mechanical properties of the recovered PHA were comprehensively analyzed to suggest its suitable practical applications. The obtained properties were comparable to that of the commercial PHA products and PHA produced from other microbial species, indicating an efficient recovery of high-quality PHA produced from methanotrophs.
AB - Synthetic biodegradable and bio-based polymers have emerged as sustainable alternatives to nonrenewable petroleum-derived polymers which cause serious environmental issues. In particular, polyhydroxyalkanoates (PHA) are promising biopolymers owing to their outstanding biodegradability and biocompatibility. The production of the homopolymer poly(3-hydroxybutyrate) (PHB) and copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from type II methanotrophs via microbial fermentation was presented. For the efficient extraction and recovery of intracellular PHA from methanotrophs, different extraction approaches were investigated including solvent extraction using 1,3-dioxolane as a green solvent, integrated cell lysis and solvent extraction, and cell digestion without the use of organic solvents. Among various extraction approaches, the integrated method exhibited the highest extraction performance, with PHA recovery and purity exceeding 91 % and 93 %, respectively, even when the PHA content of the cells was low. Furthermore, the molecular weight, thermal stability, and mechanical properties of the recovered PHA were comprehensively analyzed to suggest its suitable practical applications. The obtained properties were comparable to that of the commercial PHA products and PHA produced from other microbial species, indicating an efficient recovery of high-quality PHA produced from methanotrophs.
KW - Biodegradable plastics
KW - Eco-friendly extraction
KW - Methanotrophs
KW - Microbial fermentation
KW - Polyhydroxyalkanoates
UR - http://www.scopus.com/inward/record.url?scp=85179881420&partnerID=8YFLogxK
U2 - 10.1016/j.ijbiomac.2023.128687
DO - 10.1016/j.ijbiomac.2023.128687
M3 - Article
C2 - 38101655
AN - SCOPUS:85179881420
SN - 0141-8130
VL - 257
JO - International Journal of Biological Macromolecules
JF - International Journal of Biological Macromolecules
M1 - 128687
ER -