Asymptotic symmetries of colored gravity in three dimensions

Euihun Joung, Jaewon Kim, Jihun Kim, Soo Jong Rey

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

Three-dimensional colored gravity refers to nonabelian isospin extension of Einstein gravity. We investigate the asymptotic symmetry algebra of the SU(N)-colored gravity in (2+1)-dimensional anti-de Sitter spacetime. Formulated by the Chern-Simons theory with SU(N, N) × SU(N, N) gauge group, the theory contains graviton, SU(N) Chern-Simons gauge fields and massless spin-two multiplets in the SU(N) adjoint representation, thus extending diffeomorphism to colored, nonabelian counterpart. We identify the asymptotic symmetry as Poisson algebra of generators associated with the residual global symmetries of the nonabelian diffeomorphism set by appropriately chosen boundary conditions. The resulting asymptotic symmetry algebra is a nonlinear extension of su(N) ^ Kac-Moody algebra, supplemented by additional generators corresponding to the massless spin-two adjoint matter fields.

Original languageEnglish
Article number104
JournalJournal of High Energy Physics
Volume2018
Issue number3
DOIs
Publication statusPublished - 1 Mar 2018

Bibliographical note

Publisher Copyright:
© 2018, The Author(s).

Keywords

  • 1/N Expansion
  • Chern-Simons Theories

Fingerprint

Dive into the research topics of 'Asymptotic symmetries of colored gravity in three dimensions'. Together they form a unique fingerprint.

Cite this