Auction based Incentive Design for Efficient Federated Learning in Cellular Wireless Networks

Tra Huong Thi Le, Nguyen H. Tran, Yan Kyaw Tun, Zhu Han, Choong Seon Hong

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

59 Citations (Scopus)

Abstract

Federated learning is an prominent machine learning technique that model is trained distributively by using local data of mobile users, which can preserve the privacy of users and still guarantee high learning performance. In this paper, we deal with the problem of incentive mechanism design for motivating users to participate in training. In this paper, we employ the randomized auction framework for incentive mechanism design in which the base station is a seller and mobile users are buyers. Concerning the energy cost incurred due to join the training, the users need to decide how many uplink subchannels, transmission power and CPU cycle frequency and then claim them in submitted bids to the base station. After receiving the submitted bids, the base station needs algorithms to select winners and determine the corresponding rewards so that the social cost is minimized. The proposed mechanism can guarantee three economic properties, i.e., truthfulness, individual rationality and efficiency. Finally, numerical results are provided to demonstrate the effectiveness, and efficiency of our scheme.

Original languageEnglish
Title of host publication2020 IEEE Wireless Communications and Networking Conference, WCNC 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728131061
DOIs
Publication statusPublished - May 2020
Event2020 IEEE Wireless Communications and Networking Conference, WCNC 2020 - Seoul, Korea, Republic of
Duration: 25 May 202028 May 2020

Publication series

NameIEEE Wireless Communications and Networking Conference, WCNC
Volume2020-May
ISSN (Print)1525-3511

Conference

Conference2020 IEEE Wireless Communications and Networking Conference, WCNC 2020
Country/TerritoryKorea, Republic of
CitySeoul
Period25/05/2028/05/20

Bibliographical note

Publisher Copyright:
© 2020 IEEE.

Fingerprint

Dive into the research topics of 'Auction based Incentive Design for Efficient Federated Learning in Cellular Wireless Networks'. Together they form a unique fingerprint.

Cite this