Biomechanical analysis in the lumbar spine during two-step traction therapy

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Traction therapy is a widely used conservative treatment for low back pain. However, the effects of traction therapy on lumbar spine biomechanics are not well known. We investigated biomechanical effects of two-step traction therapy, which consists of global axial traction and local decompression, on the lumbar spine using a validated threedimensional finite element model of the lumbar spine. Onethird of body weight was applied at the center of the L1 vertebra toward the superior direction for the first axial traction. Anterior translation of L4 spinal bone was considered as the second local decompression. The lordosis angle between the superior planes of the L1 vertebra and sacrum was 44.6° at baseline, 35.2° with global axial traction, and 46.4° with local decompression. The fibers of annulus fibrosus in the posterior region, and intertransverse and posterior longitudinal ligaments experienced stress primarily during global axial traction, these stresses decreased during local decompression. A combination of global axial traction and local decompression would be helpful for reducing tensile stress on the fibers of the annulus fibrosus and ligaments, and intradiscal pressure in traction therapy. The present study could be used to develop a safer and more effective type of traction therapy.

Original languageEnglish
Title of host publication16th International Conference on Advanced Vehicle Technologies; 11th International Conference on Design Education; 7th Frontiers in Biomedical Devices
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791846346
DOIs
Publication statusPublished - 2014
EventASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014 - Buffalo, United States
Duration: 17 Aug 201420 Aug 2014

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume3

Conference

ConferenceASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014
Country/TerritoryUnited States
CityBuffalo
Period17/08/1420/08/14

Bibliographical note

Publisher Copyright:
Copyright © 2014 by ASME.

Fingerprint

Dive into the research topics of 'Biomechanical analysis in the lumbar spine during two-step traction therapy'. Together they form a unique fingerprint.

Cite this