Abstract
Here we present a method for selectively and efficiently immobilizing antibodies to enhance the detection performance of surface plasmon resonance immune-sensors (SPRIs) for diagnostic applications. To improve the performance of antibody arrays, protein G was used as antibody-selective linkage layer with aldehyde functionalized poly-(para-xylylene) film. To estimate the efficiency of antibody immobilization, immunoglobulin G (IgG) was measured using the anti-IgG immobilized SPRIs. To demonstrate the proof-of-concept validation, the signal detected from the IgG using parylene-H film was compared with that of a combination of parylene-H and protein G in SPRIs. The results showed that the detection of IgG on the immobilized anti-IgG layer using the combination of parylene-H and protein G has a larger change of signal than that of using parylene-H layer. These results also imply that the anti-IgG was densely and efficiently immobilized on the modified surface with the linkage layer in a combination with parylene-H and protein G. Therefore, we believe that this combinatorial approach could selectively immobilize the antibodies, and also be applied for detection and diagnosis of immune diseases in the field of many SPRIs applications.
Original language | English |
---|---|
Pages (from-to) | 2093-2099 |
Number of pages | 7 |
Journal | Microsystem Technologies |
Volume | 22 |
Issue number | 8 |
DOIs | |
Publication status | Published - 1 Aug 2016 |
Bibliographical note
Publisher Copyright:© 2015, Springer-Verlag Berlin Heidelberg.