Design and optimization of a TiO2/RGO-supported epoxy multilayer microwave absorber by the modified local best particle swarm optimization algorithm

Mohammad Reza Karami, Babak Jaleh, Mahtab Eslamipanah, Atefeh Nasri, Kyong Yop Rhee

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Microwave absorbers have many applications in medical, industrial, and military devices. Polymeric composites including carbon-based filler can be used as lightweight absorbers with high electromagnetic (EM) wave absorption performance. Hence, multilayer microwave absorbers were designed using titanium dioxide (TiO2)/reduced graphene oxide (RGO)/epoxy nanocomposites with different weight percentages manufactured using refluxing and annealing methods. The characterization of nanocomposite indicated thin layers of TiO2/RGO as divided sheets in epoxy. The EM properties of the nanocomposites were examined using the Nicolson-Ross-Weir (NRW) detection method. The S-parameters were measured using PNA-N5222A Microwave Network Analyzer. The multilayer absorber software was designed based on the modified local best particle swarm optimization algorithm by MATLAB software, in which the material and thickness of layers were optimized with two cost functions in X-band frequencies. The first cost function seeks to reach the best absorption bandwidth, and the second cost function seeks to reach the maximum average return loss (RL) of the frequency range of 8.2-12.4 GHz. A maximum bandwidth with an RL of less than -12.81 dB was obtained with a thickness of 2.4 mm. A maximum average RL of -22.1 dB was obtained with a thickness of 2.6 mm. The maximum absorption peak was observed with a thickness of 2.5 mm with -62.82 dB at a frequency of 10.86 GHz.

Original languageEnglish
Article number20230121
JournalNanotechnology Reviews
Volume12
Issue number1
DOIs
Publication statusPublished - 1 Jan 2023

Bibliographical note

Publisher Copyright:
© 2023 the author(s), published by De Gruyter.

Keywords

  • TiOnanoparticles
  • graphene oxide
  • multilayer microwave absorber
  • particle swarm optimization algorithm

Fingerprint

Dive into the research topics of 'Design and optimization of a TiO2/RGO-supported epoxy multilayer microwave absorber by the modified local best particle swarm optimization algorithm'. Together they form a unique fingerprint.

Cite this