Developing and Evaluating Deep Learning Algorithms for Object Detection: Key Points for Achieving Superior Model Performance

Jang Hoon Oh, Hyug Gi Kim, Kyung Mi Lee

Research output: Contribution to journalReview articlepeer-review

3 Citations (Scopus)

Abstract

In recent years, artificial intelligence, especially object detection-based deep learning in computer vision, has made significant advancements, driven by the development of computing power and the widespread use of graphic processor units. Object detection-based deep learning techniques have been applied in various fields, including the medical imaging domain, where remarkable achievements have been reported in disease detection. However, the application of deep learning does not always guarantee satisfactory performance, and researchers have been employing trial-and-error to identify the factors contributing to performance degradation and enhance their models. Moreover, due to the black-box problem, the intermediate processes of a deep learning network cannot be comprehended by humans; as a result, identifying problems in a deep learning model that exhibits poor performance can be challenging. This article highlights potential issues that may cause performance degradation at each deep learning step in the medical imaging domain and discusses factors that must be considered to improve the performance of deep learning models. Researchers who wish to begin deep learning research can reduce the required amount of trial-and-error by understanding the issues discussed in this study.

Original languageEnglish
Pages (from-to)698-714
Number of pages17
JournalKorean Journal of Radiology
Volume24
Issue number7
DOIs
Publication statusPublished - Jul 2023

Bibliographical note

Publisher Copyright:
© 2023 The Korean Society of Radiology.

Keywords

  • Data augmentation
  • Deep learning
  • Deep learning workflow
  • Disease subclass
  • Diseases with small sizes
  • Hyperparameter optimization
  • Image modality
  • Object detection

Fingerprint

Dive into the research topics of 'Developing and Evaluating Deep Learning Algorithms for Object Detection: Key Points for Achieving Superior Model Performance'. Together they form a unique fingerprint.

Cite this