Abstract
The global automobile market experiences quick changes in design preferences. In response to the demand shifts, manufacturers now try to apply new technologies to bring a novel design to market faster. In this paper, we introduce a novel application that performs a similarity verification task of wheel designs using an AI model and cloud computing technology. At Jan 2022, we successfully implemented the application to the wheel design process of Hyundai Motor Company's design team and shortened the similarity verification time by 90% to a maximum of 10 minutes. We believe that this study is the first to build a wheel image database and empirically prove that the cross-entropy loss does similar tasks as the pairwise losses do in the embedding space. As a result, we successfully automated Hyundai Motor's verification task of wheel design similarity. With a few clicks, the end-users in Hyundai Motor could take advantage of our application.
Original language | English |
---|---|
Title of host publication | AAAI-23 Special Programs, IAAI-23, EAAI-23, Student Papers and Demonstrations |
Editors | Brian Williams, Yiling Chen, Jennifer Neville |
Publisher | AAAI Press |
Pages | 15512-15518 |
Number of pages | 7 |
ISBN (Electronic) | 9781577358800 |
DOIs | |
Publication status | Published - 27 Jun 2023 |
Event | 37th AAAI Conference on Artificial Intelligence, AAAI 2023 - Washington, United States Duration: 7 Feb 2023 → 14 Feb 2023 |
Publication series
Name | Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023 |
---|---|
Volume | 37 |
Conference
Conference | 37th AAAI Conference on Artificial Intelligence, AAAI 2023 |
---|---|
Country/Territory | United States |
City | Washington |
Period | 7/02/23 → 14/02/23 |
Bibliographical note
Publisher Copyright:Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.