Abstract
SOX11 is a transcription factor that is normally expressed in the fetal brain and has also been detected in some malignant tumors, including mantle cell lymphoma (MCL). MCL is a mature B-cell lymphoma that characteristically expresses cyclin D1, which has been used as a diagnostic tumor marker. SOX11 has also recently emerged as a tumor marker for MCL, particularly in cyclin D1-negative MCLs and to distinguish between MCLs and other cyclin D1-positive lymphomas. In this study, we evaluated the diagnostic accuracy of SOX11 immunohistochemistry for the diagnosis of MCL using a meta-analysis. A comprehensive literature search was performed using the PubMED, EMBASE, and Cochrane library through May 9, 2018. In total, 14 studies were included in our meta-analysis. The sensitivity, specificity, and area under the curve calculated from the summary receiver operator characteristic were 0.9, 0.95, and 0.934, respectively. Effect sizes of log positive likelihood ratios, log negative likelihood ratios, and log diagnostic odds ratios were 2.67, -2.12, and 5.27, respectively. Statistically significant substantial heterogeneity was observed for specificity (I2 = 95%), but not for sensitivity. Subgroup analysis and meta-regression were performed to explain the heterogeneity in specificity and showed that the proportions of Burkitt’s lymphoma, lymphoblastic lymphoma, and hairy cell leukemia were significant covariates among studies using rabbit polyclonal antibodies. Overall, this meta-analysis showed that SOX11 was a useful diagnostic marker for MCL, with the clone MRQ-58 mouse monoclonal antibody showing particularly robust performance.
Original language | English |
---|---|
Article number | e0225096 |
Journal | PLoS ONE |
Volume | 14 |
Issue number | 11 |
DOIs | |
Publication status | Published - 1 Nov 2019 |
Bibliographical note
Publisher Copyright:© 2019 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.