TY - JOUR
T1 - Dual Beneficial Effects of α-Spinasterol Isolated from Aster pseudoglehnii on Glucose Uptake in Skeletal Muscle Cells and Glucose-Stimulated Insulin Secretion in Pancreatic β-Cells
AU - Lee, Dahae
AU - Kim, Ji Young
AU - Kwon, Hak Cheol
AU - Kwon, Jaeyoung
AU - Jang, Dae Sik
AU - Kang, Ki Sung
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/3/1
Y1 - 2022/3/1
N2 - Herein, we determined whether α-Spinasterol, a stigmastane-type phytosterol isolated from Aster pseudoglehnii, potentially impacts glucose uptake and glucose-stimulated insulin secretion in skeletal muscle cells and pancreatic β-cells, respectively. We observed that A. pseudoglehnii and its fractions enhanced glucose uptake, with no toxic effects on C2C12 cells, with the n-hexane fraction exhibiting the most potent effect. α-Spinasterol, isolated from the n-hexane fraction, enhanced glucose uptake with no toxic effects on C2C12 cells. Additionally, α-Spinasterol increased the expression of associated proteins, including insulin receptor substrate-1, AMP-activated protein kinase, and glucose transporter type 4, as determined by Western blotting. Furthermore, α-Spinasterol enhanced insulin secretion in response to high glucose concentrations, with no toxic effects on INS-1 cells; this effect was superior to that demonstrated by gliclazide (positive control), commonly prescribed to treat type 2 diabetes (T2D). α-Spinasterol enhanced the expression of associated proteins, including insulin receptor substrate-2, peroxisome proliferator-activated receptor γ, and pancreatic and duodenal homeobox 1, as determined using Western blotting. The insulin secretory effect of α-Spinasterol was enhanced by a K+ channel blocker and L-type Ca2+ channel agonist and was suppressed by a K+ channel activator and L-type Ca2+ channel blocker. α-Spinasterol isolated from A. pseudoglehnii may improve hyperglycemia by improving glucose uptake into skeletal muscle cells and enhancing insulin secretion in pancreatic β-cells. Accordingly, α-Spinasterol could be a potential candidate for anti-T2D therapy.
AB - Herein, we determined whether α-Spinasterol, a stigmastane-type phytosterol isolated from Aster pseudoglehnii, potentially impacts glucose uptake and glucose-stimulated insulin secretion in skeletal muscle cells and pancreatic β-cells, respectively. We observed that A. pseudoglehnii and its fractions enhanced glucose uptake, with no toxic effects on C2C12 cells, with the n-hexane fraction exhibiting the most potent effect. α-Spinasterol, isolated from the n-hexane fraction, enhanced glucose uptake with no toxic effects on C2C12 cells. Additionally, α-Spinasterol increased the expression of associated proteins, including insulin receptor substrate-1, AMP-activated protein kinase, and glucose transporter type 4, as determined by Western blotting. Furthermore, α-Spinasterol enhanced insulin secretion in response to high glucose concentrations, with no toxic effects on INS-1 cells; this effect was superior to that demonstrated by gliclazide (positive control), commonly prescribed to treat type 2 diabetes (T2D). α-Spinasterol enhanced the expression of associated proteins, including insulin receptor substrate-2, peroxisome proliferator-activated receptor γ, and pancreatic and duodenal homeobox 1, as determined using Western blotting. The insulin secretory effect of α-Spinasterol was enhanced by a K+ channel blocker and L-type Ca2+ channel agonist and was suppressed by a K+ channel activator and L-type Ca2+ channel blocker. α-Spinasterol isolated from A. pseudoglehnii may improve hyperglycemia by improving glucose uptake into skeletal muscle cells and enhancing insulin secretion in pancreatic β-cells. Accordingly, α-Spinasterol could be a potential candidate for anti-T2D therapy.
KW - Aster pseudoglehnii
KW - Glucose uptake
KW - Glucose-stimulated insulin secretion
KW - α-Spinasterol
UR - http://www.scopus.com/inward/record.url?scp=85125286222&partnerID=8YFLogxK
U2 - 10.3390/plants11050658
DO - 10.3390/plants11050658
M3 - Article
AN - SCOPUS:85125286222
SN - 2223-7747
VL - 11
JO - Plants
JF - Plants
IS - 5
M1 - 658
ER -