Abstract
We statistically study the local time distribution of the helium band electromagnetic ion cyclotron (EMIC) waves observed at geosynchronous orbit when geomagnetic activity was low (Kp ≤ 1). In order to identify the geosynchronous EMIC waves, we use high time resolution magnetic field data acquired from GOES 10, 11, and 12 over a 2 year period from 2007 and 2008 and examine the local time distribution of EMIC wave events. Unlike previous studies, which reported high EMIC wave occurrence in the postnoon sector with a peak around 1500-1600 magnetic local time (MLT) during magnetically disturbed times (i.e., storm and/or substorm), we observed that quiet time EMIC waves mostly occur in a region from morning (∼0600 MLT) to afternoon (∼1600 MLT) with a peak around 1100-1200 MLT. To investigate whether the quiet time EMIC wave occurrence has a causal relationship with magnetospheric convection enhancement or solar wind dynamic pressure variations, we performed a superposed epoch analysis of solar wind parameters (solar wind speed, density, dynamic pressure, and interplanetary magnetic field Bz) and geomagnetic indices (AE and SYM-H). From the superposed epoch analysis we found that solar wind dynamic pressure variation is a more important parameter than AE and SYM-H for quiet time EMIC wave occurrence.
Original language | English |
---|---|
Pages (from-to) | 1377-1390 |
Number of pages | 14 |
Journal | Journal of Geophysical Research: Space Physics |
Volume | 121 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Feb 2016 |
Bibliographical note
Publisher Copyright:©2016. American Geophysical Union. All Rights Reserved.
Keywords
- EMIC waves
- geosynchronous orbit
- solar wind dynamic pressure