Abstract
Urban air Mobility (UAM) has been conceived as a new form of transportation. UAM ultimately aims to operate unmanned, so it needs to select its trajectory and periodically send its status to the base station (BS). As an status indicator, the age of information (AoI) signifies the freshness of the information, and it is crucial for applications like real-time control systems. In this article, we address two main challenges: optimizing the UAM's trajectory and updating the AoI between the UAM and the BS. We formulate an algorithm to maximize the energy efficiency of each UAM's trajectory and jointly minimize the AoI cycle. As a complicated and non-convex problem, we approach proximal policy optimization (PPO) as our solution in this paper. Experiment results show that our proposed method outperformed the direct trajectory baseline in similar energy efficiency but achieved 46% increased efficiency in average AoI.
Original language | English |
---|---|
Title of host publication | Proceedings of IEEE/IFIP Network Operations and Management Symposium 2024, NOMS 2024 |
Editors | James Won-Ki Hong, Seung-Joon Seok, Yuji Nomura, You-Chiun Wang, Baek-Young Choi, Myung-Sup Kim, Roberto Riggio, Meng-Hsun Tsai, Carlos Raniery Paula dos Santos |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9798350327939 |
DOIs | |
Publication status | Published - 2024 |
Event | 2024 IEEE/IFIP Network Operations and Management Symposium, NOMS 2024 - Seoul, Korea, Republic of Duration: 6 May 2024 → 10 May 2024 |
Publication series
Name | Proceedings of IEEE/IFIP Network Operations and Management Symposium 2024, NOMS 2024 |
---|
Conference
Conference | 2024 IEEE/IFIP Network Operations and Management Symposium, NOMS 2024 |
---|---|
Country/Territory | Korea, Republic of |
City | Seoul |
Period | 6/05/24 → 10/05/24 |
Bibliographical note
Publisher Copyright:© 2024 IEEE.
Keywords
- Age of Information(AoI)
- Energy Optimization
- Network Management
- Reinforcement Learning
- Trajectory Optimization
- Urban Air Mobility (UAM)