Abstract
In video person re-identification (Re-ID), the network must consistently extract features of the target person from successive frames. Existing methods tend to focus only on how to use temporal information, which often leads to networks being fooled by similar appearances and same backgrounds. In this paper, we propose a Disentanglement and Switching and Aggregation Network (DSANet), which segregates the features representing identity and features based on camera characteristics, and pays more attention to ID information. We also introduce an auxiliary task that utilizes a new pair of features created through switching and aggregation to increase the network's capability for various camera scenarios. Furthermore, we devise a Target Localization Module (TLM) that extracts robust features against a change in the position of the target according to the frame flow and a Frame Weight Generation (FWG) that reflects temporal information in the final representation. Various loss functions for disentanglement learning are designed so that each component of the network can cooperate while satisfactorily performing its own role. Quantitative and qualitative results from extensive experiments demonstrate the superiority of DSANet over state-of-the-art methods on three benchmark datasets.
Original language | English |
---|---|
Title of host publication | Proceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1603-1612 |
Number of pages | 10 |
ISBN (Electronic) | 9781665493468 |
DOIs | |
Publication status | Published - 2023 |
Event | 23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023 - Waikoloa, United States Duration: 3 Jan 2023 → 7 Jan 2023 |
Publication series
Name | Proceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023 |
---|
Conference
Conference | 23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023 |
---|---|
Country/Territory | United States |
City | Waikoloa |
Period | 3/01/23 → 7/01/23 |
Bibliographical note
Publisher Copyright:© 2023 IEEE.
Keywords
- Algorithms: Video recognition and understanding (tracking, action recognition, etc.)
- Image recognition and understanding (object detection, categorization, segmentation, scene modeling, visual reasoning)