Feature Disentanglement Learning with Switching and Aggregation for Video-based Person Re-Identification

Minjung Kim, Myeong Ah Cho, Sangyoun Lee

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Citations (Scopus)

Abstract

In video person re-identification (Re-ID), the network must consistently extract features of the target person from successive frames. Existing methods tend to focus only on how to use temporal information, which often leads to networks being fooled by similar appearances and same backgrounds. In this paper, we propose a Disentanglement and Switching and Aggregation Network (DSANet), which segregates the features representing identity and features based on camera characteristics, and pays more attention to ID information. We also introduce an auxiliary task that utilizes a new pair of features created through switching and aggregation to increase the network's capability for various camera scenarios. Furthermore, we devise a Target Localization Module (TLM) that extracts robust features against a change in the position of the target according to the frame flow and a Frame Weight Generation (FWG) that reflects temporal information in the final representation. Various loss functions for disentanglement learning are designed so that each component of the network can cooperate while satisfactorily performing its own role. Quantitative and qualitative results from extensive experiments demonstrate the superiority of DSANet over state-of-the-art methods on three benchmark datasets.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1603-1612
Number of pages10
ISBN (Electronic)9781665493468
DOIs
Publication statusPublished - 2023
Event23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023 - Waikoloa, United States
Duration: 3 Jan 20237 Jan 2023

Publication series

NameProceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023

Conference

Conference23rd IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023
Country/TerritoryUnited States
CityWaikoloa
Period3/01/237/01/23

Bibliographical note

Publisher Copyright:
© 2023 IEEE.

Keywords

  • Algorithms: Video recognition and understanding (tracking, action recognition, etc.)
  • Image recognition and understanding (object detection, categorization, segmentation, scene modeling, visual reasoning)

Fingerprint

Dive into the research topics of 'Feature Disentanglement Learning with Switching and Aggregation for Video-based Person Re-Identification'. Together they form a unique fingerprint.

Cite this