Federated learning based energy demand prediction with clustered aggregation

Ye Lin Tun, Kyi Thar, Chu Myaet Thwal, Choong Seon Hong

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

56 Citations (Scopus)

Abstract

To reduce negative environmental impacts, power stations and energy grids need to optimize the resources required for power production. Thus, predicting the energy consumption of clients is becoming an important part of every energy management system. Energy usage information collected by the clients' smart homes can be used to train a deep neural network to predict the future energy demand. Collecting data from a large number of distributed clients for centralized model training is expensive in terms of communication resources. To take advantage of distributed data in edge systems, centralized training can be replaced by federated learning where each client only needs to upload model updates produced by training on its local data. These model updates are aggregated into a single global model by the server. But since different clients can have different attributes, model updates can have diverse weights and as a result, it can take a long time for the aggregated global model to converge. To speed up the convergence process, we can apply clustering to group clients based on their properties and aggregate model updates from the same cluster together to produce a cluster specific global model. In this paper, we propose a recurrent neural network based energy demand predictor, trained with federated learning on clustered clients to take advantage of distributed data and speed up the convergence process.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE International Conference on Big Data and Smart Computing, BigComp 2021
EditorsHerwig Unger, Jinho Kim, U Kang, Chakchai So-In, Junping Du, Walid Saad, Young-guk Ha, Christian Wagner, Julien Bourgeois, Chanboon Sathitwiriyawong, Hyuk-Yoon Kwon, Carson Leung
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages164-167
Number of pages4
ISBN (Electronic)9781728189246
DOIs
Publication statusPublished - Jan 2021
Event2021 IEEE International Conference on Big Data and Smart Computing, BigComp 2021 - Jeju Island, Korea, Republic of
Duration: 17 Jan 202120 Jan 2021

Publication series

NameProceedings - 2021 IEEE International Conference on Big Data and Smart Computing, BigComp 2021

Conference

Conference2021 IEEE International Conference on Big Data and Smart Computing, BigComp 2021
Country/TerritoryKorea, Republic of
CityJeju Island
Period17/01/2120/01/21

Bibliographical note

Publisher Copyright:
© 2021 IEEE.

Keywords

  • Clustering
  • Energy
  • Federated learning
  • Long short-term memory
  • Recurrent neural network

Fingerprint

Dive into the research topics of 'Federated learning based energy demand prediction with clustered aggregation'. Together they form a unique fingerprint.

Cite this