Federated Learning with Intermediate Representation Regularization

Ye Lin Tun, Chu Myaet Thwal, Yu Min Park, Seong Bae Park, Choong Seon Hong

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Citations (Scopus)

Abstract

In contrast to centralized model training that involves data collection, federated learning (FL) enables remote clients to collaboratively train a model without exposing their private data. However, model performance usually degrades in FL due to the heterogeneous data generated by clients of diverse characteristics. One promising strategy to maintain good performance is by limiting the local training from drifting far away from the global model. Previous studies accomplish this by regularizing the distance between the representations learned by the local and global models. However, they only consider representations from the early layers of a model or the layer preceding the output layer. In this study, we introduce FedIntR, which provides a more fine-grained regularization by integrating the representations of intermediate layers into the local training process. Specifically, FedIntR computes a regularization term that encourages the closeness between the intermediate layer representations of the local and global models. Additionally, FedIntR automatically determines the contribution of each layer's representation to the regularization term based on the similarity between local and global representations. We conduct extensive experiments on various datasets to show that FedIntR can achieve equivalent or higher performance compared to the state-of-the-art approaches. Our code is available at https://github.com/YLTun/FedIntR.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE International Conference on Big Data and Smart Computing, BigComp 2023
EditorsHyeran Byun, Beng Chin Ooi, Katsumi Tanaka, Sang-Won Lee, Zhixu Li, Akiyo Nadamoto, Giltae Song, Young-guk Ha, Kazutoshi Sumiya, Wu Yuncheng, Hyuk-Yoon Kwon, Takehiro Yamamoto
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages56-63
Number of pages8
ISBN (Electronic)9781665475785
DOIs
Publication statusPublished - 2023
Event2023 IEEE International Conference on Big Data and Smart Computing, BigComp 2023 - Jeju, Korea, Republic of
Duration: 13 Feb 202316 Feb 2023

Publication series

NameProceedings - 2023 IEEE International Conference on Big Data and Smart Computing, BigComp 2023

Conference

Conference2023 IEEE International Conference on Big Data and Smart Computing, BigComp 2023
Country/TerritoryKorea, Republic of
CityJeju
Period13/02/2316/02/23

Bibliographical note

Publisher Copyright:
© 2023 IEEE.

Keywords

  • data heterogeneity
  • distributed
  • federated learning
  • representation

Fingerprint

Dive into the research topics of 'Federated Learning with Intermediate Representation Regularization'. Together they form a unique fingerprint.

Cite this