FPoxDB: Fungal peroxidase database for comparative genomics

Jaeyoung Choi, Nicolas Détry, Ki Tae Kim, Fred O. Asiegbu, Jari Pt Valkonen, Yong Hwan Lee

Research output: Contribution to journalArticlepeer-review

55 Citations (Scopus)

Abstract

Background: Peroxidases are a group of oxidoreductases which mediate electron transfer from hydrogen peroxide (H2O2) and organic peroxide to various electron acceptors. They possess a broad spectrum of impact on industry and fungal biology. There are numerous industrial applications using peroxidases, such as to catalyse highly reactive pollutants and to breakdown lignin for recycling of carbon sources. Moreover, genes encoding peroxidases play important roles in fungal pathogenicity in both humans and plants. For better understanding of fungal peroxidases at the genome-level, a novel genomics platform is required. To this end, Fungal Peroxidase Database (fPoxDB;) has been developed to provide such a genomics platform for this important gene family. Description. In order to identify and classify fungal peroxidases, 24 sequence profiles were built and applied on 331 genomes including 216 from fungi and Oomycetes. In addition, NoxR, which is known to regulate NADPH oxidases (NoxA and NoxB) in fungi, was also added to the pipeline. Collectively, 6,113 genes were predicted to encode 25 gene families, presenting well-separated distribution along the taxonomy. For instance, the genes encoding lignin peroxidase, manganese peroxidase, and versatile peroxidase were concentrated in the rot-causing basidiomycetes, reflecting their ligninolytic capability. As a genomics platform, fPoxDB provides diverse analysis resources, such as gene family predictions based on fungal sequence profiles, pre-computed results of eight bioinformatics programs, similarity search tools, a multiple sequence alignment tool, domain analysis functions, and taxonomic distribution summary, some of which are not available in the previously developed peroxidase resource. In addition, fPoxDB is interconnected with other family web systems, providing extended analysis opportunities. Conclusions: fPoxDB is a fungi-oriented genomics platform for peroxidases. The sequence-based prediction and diverse analysis toolkits with easy-to-follow web interface offer a useful workbench to study comparative and evolutionary genomics of peroxidases in fungi.

Original languageEnglish
Article number117
JournalBMC Microbiology
Volume14
Issue number1
DOIs
Publication statusPublished - 8 May 2014

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation of Korea grant funded by the Korea government (2008–0061897 and 2013–003196) and the Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ00821201), Rural Development Administration, Republic of Korea. JC and KTK are grateful for a graduate fellowship through the Brain Korea 21 Plus Program. This work was also supported by the Finland Distinguished Professor Program (FiDiPro) from the Academy of Finland (FiDiPro # 138116). We also thank Da-Young Lee for critical reading of the manuscript.

Fingerprint

Dive into the research topics of 'FPoxDB: Fungal peroxidase database for comparative genomics'. Together they form a unique fingerprint.

Cite this