Abstract
Federated learning has made it possible to learn models using distributed computing resources. The most commonly used, Fedavg method has a simple structure and shows good performance. However, Fedavg has the disadvantage of not considering the performance of each user device in real-time. To solve this problem, we propose GDFed. It is a federated learning structure that understands the performance and real-time status of each user device during proceeds learning. GNN learns from the graph-type dataset and can perform tasks such as node clustering or node classification through the feature of each node (in this case, the device). GDFed is an architecture that clusters devices using pre-trained GNN models and proceeds with federated learning, taking into account the current capabilities of each device. In the experiment, we show the GDFed method outperforms the Fedavg method by 43.3% in reducing the delay time.
Original language | English |
---|---|
Title of host publication | 37th International Conference on Information Networking, ICOIN 2023 |
Publisher | IEEE Computer Society |
Pages | 683-685 |
Number of pages | 3 |
ISBN (Electronic) | 9781665462686 |
DOIs | |
Publication status | Published - 2023 |
Event | 37th International Conference on Information Networking, ICOIN 2023 - Bangkok, Thailand Duration: 11 Jan 2023 → 14 Jan 2023 |
Publication series
Name | International Conference on Information Networking |
---|---|
Volume | 2023-January |
ISSN (Print) | 1976-7684 |
Conference
Conference | 37th International Conference on Information Networking, ICOIN 2023 |
---|---|
Country/Territory | Thailand |
City | Bangkok |
Period | 11/01/23 → 14/01/23 |
Bibliographical note
Publisher Copyright:© 2023 IEEE.
Keywords
- Fedavg
- Federated learning
- GDFed
- GNN