TY - JOUR
T1 - Ginkgolic Acid Inhibits Invasion and Migration and TGF-β-Induced EMT of Lung Cancer Cells Through PI3K/Akt/mTOR Inactivation
AU - Baek, Seung Ho
AU - Ko, Jeong Hyeon
AU - Lee, Jong Hyun
AU - Kim, Chulwon
AU - Lee, Hanwool
AU - Nam, Dongwoo
AU - Lee, Junhee
AU - Lee, Seok Geun
AU - Yang, Woong Mo
AU - Um, Jae Young
AU - Sethi, Gautam
AU - Ahn, Kwang Seok
N1 - Publisher Copyright:
© 2016 Wiley Periodicals, Inc.
PY - 2017/2/1
Y1 - 2017/2/1
N2 - Epithelial-to-mesenchymal transition (EMT) is a critical cellular phenomenon regulating tumor metastases. In the present study, we investigated whether ginkgolic acid can affect EMT in lung cancer cells and the related underlying mechanism(s) of its actions. We found that ginkgolic acid C15:1 (GA C15:1) inhibited cell proliferation, invasion, and migration in both A549 and H1299 lung cancer cells. GA C15:1 also suppressed the expression of EMT related genes (Fibronectin, Vimentin, N-cadherin, MMP-9, MMP-2, Twist and Snail) and suppressed TGF-β-induced EMT as assessed by reduced expression of mesenchymal markers (Fibronectin, Vimentin, N-cadherin), MMP-9, MMP-2, Twist and Snail. However, GA C15:1 did not affect the expression of various epithelial marker proteins (Occludin and E-cadherin) in both A549 and H1299 cells. TGF-β-induced morphologic changes from epithelial to mesenchymal cells and induction of invasion and migration were reversed by GA C15:1. Finally, GA C15:1 not only abrogated basal PI3K/Akt/mTOR signaling cascade, but also reduced TGF-β-induced phosphorylation of PI3K/Akt/mTOR pathway in lung cancer cells. Overall, these findings suggest that GA C15:1 suppresses lung cancer invasion and migration through the inhibition of PI3K/Akt/mTOR signaling pathway and provide a source of potential therapeutic compounds to control the metastatic dissemination of tumor cells. J. Cell. Physiol. 232: 346–354, 2017.
AB - Epithelial-to-mesenchymal transition (EMT) is a critical cellular phenomenon regulating tumor metastases. In the present study, we investigated whether ginkgolic acid can affect EMT in lung cancer cells and the related underlying mechanism(s) of its actions. We found that ginkgolic acid C15:1 (GA C15:1) inhibited cell proliferation, invasion, and migration in both A549 and H1299 lung cancer cells. GA C15:1 also suppressed the expression of EMT related genes (Fibronectin, Vimentin, N-cadherin, MMP-9, MMP-2, Twist and Snail) and suppressed TGF-β-induced EMT as assessed by reduced expression of mesenchymal markers (Fibronectin, Vimentin, N-cadherin), MMP-9, MMP-2, Twist and Snail. However, GA C15:1 did not affect the expression of various epithelial marker proteins (Occludin and E-cadherin) in both A549 and H1299 cells. TGF-β-induced morphologic changes from epithelial to mesenchymal cells and induction of invasion and migration were reversed by GA C15:1. Finally, GA C15:1 not only abrogated basal PI3K/Akt/mTOR signaling cascade, but also reduced TGF-β-induced phosphorylation of PI3K/Akt/mTOR pathway in lung cancer cells. Overall, these findings suggest that GA C15:1 suppresses lung cancer invasion and migration through the inhibition of PI3K/Akt/mTOR signaling pathway and provide a source of potential therapeutic compounds to control the metastatic dissemination of tumor cells. J. Cell. Physiol. 232: 346–354, 2017.
UR - http://www.scopus.com/inward/record.url?scp=84973667610&partnerID=8YFLogxK
U2 - 10.1002/jcp.25426
DO - 10.1002/jcp.25426
M3 - Article
C2 - 27177359
AN - SCOPUS:84973667610
SN - 0021-9541
VL - 232
SP - 346
EP - 354
JO - Journal of Cellular Physiology
JF - Journal of Cellular Physiology
IS - 2
ER -