TY - JOUR
T1 - Group theoretical approach to quantum fields in de Sitter space II. the complementary and discrete series
AU - Joung, Euihun
AU - Mourad, Jihad
AU - Parentani, Renaud
PY - 2007/9/1
Y1 - 2007/9/1
N2 - We use an algebraic approach based on representations of de Sitter group to construct covariant quantum fields in arbitrary dimensions. We study the complementary and the discrete series which correspond to light and massless fields and which lead new feature with respect to the massive principal series we previously studied (hep-th/0606119). When considering the complementary series, we make use of a non-trivial scalar product in order to get local expressions in the position representation. Based on these, we construct a family of covariant canonical fields parametrized by SU(1,1)/U(1). Each of these correspond to the dS invariant alpha-vacua. The behavior of the modes at asymptotic times brings another difficulty as it is incompatible with the usual definition of the in and out vacua. We propose a generalized notion of these vacua which reduces to the usual conformal vacuum in the conformally massless limit. When considering the massless discrete series we find that no covariant field obeys the canonical commutation relations. To further analyze this singular case, we consider the massless limit of the complementary scalar fields we previously found. We obtain canonical fields with a deformed representation by zero modes. The zero modes have a dS invariant vacuum with singular norm. We propose a regularization by a compactification of the scalar field and a dS invariant definition of the vertex operators. The resulting two-point functions are dS invariant and have a universal logarithmic infrared divergence.
AB - We use an algebraic approach based on representations of de Sitter group to construct covariant quantum fields in arbitrary dimensions. We study the complementary and the discrete series which correspond to light and massless fields and which lead new feature with respect to the massive principal series we previously studied (hep-th/0606119). When considering the complementary series, we make use of a non-trivial scalar product in order to get local expressions in the position representation. Based on these, we construct a family of covariant canonical fields parametrized by SU(1,1)/U(1). Each of these correspond to the dS invariant alpha-vacua. The behavior of the modes at asymptotic times brings another difficulty as it is incompatible with the usual definition of the in and out vacua. We propose a generalized notion of these vacua which reduces to the usual conformal vacuum in the conformally massless limit. When considering the massless discrete series we find that no covariant field obeys the canonical commutation relations. To further analyze this singular case, we consider the massless limit of the complementary scalar fields we previously found. We obtain canonical fields with a deformed representation by zero modes. The zero modes have a dS invariant vacuum with singular norm. We propose a regularization by a compactification of the scalar field and a dS invariant definition of the vertex operators. The resulting two-point functions are dS invariant and have a universal logarithmic infrared divergence.
KW - DS vacua in string theory
KW - Global symmetries
KW - Space-time symmetries
UR - http://www.scopus.com/inward/record.url?scp=34948848041&partnerID=8YFLogxK
U2 - 10.1088/1126-6708/2007/09/030
DO - 10.1088/1126-6708/2007/09/030
M3 - Article
AN - SCOPUS:34948848041
SN - 1029-8479
VL - 2007
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
IS - 9
M1 - 030
ER -