TY - JOUR
T1 - High-resolution time-frequency spectrum-based lung function test from a smartphone microphone
AU - Thap, Tharoeun
AU - Chung, Heewon
AU - Jeong, Changwon
AU - Hwang, Ki Eun
AU - Kim, Hak Ryul
AU - Yoon, Kwon Ha
AU - Lee, Jinseok
N1 - Publisher Copyright:
© 2016 by the authors; licensee MDPI, Basel, Switzerland.
PY - 2016/8/17
Y1 - 2016/8/17
N2 - In this paper, a smartphone-based lung function test, developed to estimate lung function parameters using a high-resolution time-frequency spectrum from a smartphone built-in microphone is presented. A method of estimation of the forced expiratory volume in 1 s divided by forced vital capacity (FEV1/FVC) based on the variable frequency complex demodulation method (VFCDM) is first proposed. We evaluated our proposed method on 26 subjects, including 13 healthy subjects and 13 chronic obstructive pulmonary disease (COPD) patients, by comparing with the parameters clinically obtained from pulmonary function tests (PFTs). For the healthy subjects, we found that an absolute error (AE) and a root mean squared error (RMSE) of the FEV1/FVC ratio were 4.49% ± 3.38% and 5.54%, respectively. For the COPD patients, we found that AE and RMSE from COPD patients were 10.30% ± 10.59% and 14.48%, respectively. For both groups, we compared the results using the continuous wavelet transform (CWT) and short-time Fourier transform (STFT), and found that VFCDM was superior to CWT and STFT. Further, to estimate other parameters, including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), and peak expiratory flow (PEF), regression analysis was conducted to establish a linear transformation. However, the parameters FVC, FEV1, and PEF had correlation factor r values of 0.323, 0.275, and ??0.257, respectively, while FEV1/FVC had an r value of 0.814. The results obtained suggest that only the FEV1/FVC ratio can be accurately estimated from a smartphone built-in microphone. The other parameters, including FVC, FEV1, and PEF, were subjective and dependent on the subject’s familiarization with the test and performance of forced exhalation toward the microphone.
AB - In this paper, a smartphone-based lung function test, developed to estimate lung function parameters using a high-resolution time-frequency spectrum from a smartphone built-in microphone is presented. A method of estimation of the forced expiratory volume in 1 s divided by forced vital capacity (FEV1/FVC) based on the variable frequency complex demodulation method (VFCDM) is first proposed. We evaluated our proposed method on 26 subjects, including 13 healthy subjects and 13 chronic obstructive pulmonary disease (COPD) patients, by comparing with the parameters clinically obtained from pulmonary function tests (PFTs). For the healthy subjects, we found that an absolute error (AE) and a root mean squared error (RMSE) of the FEV1/FVC ratio were 4.49% ± 3.38% and 5.54%, respectively. For the COPD patients, we found that AE and RMSE from COPD patients were 10.30% ± 10.59% and 14.48%, respectively. For both groups, we compared the results using the continuous wavelet transform (CWT) and short-time Fourier transform (STFT), and found that VFCDM was superior to CWT and STFT. Further, to estimate other parameters, including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), and peak expiratory flow (PEF), regression analysis was conducted to establish a linear transformation. However, the parameters FVC, FEV1, and PEF had correlation factor r values of 0.323, 0.275, and ??0.257, respectively, while FEV1/FVC had an r value of 0.814. The results obtained suggest that only the FEV1/FVC ratio can be accurately estimated from a smartphone built-in microphone. The other parameters, including FVC, FEV1, and PEF, were subjective and dependent on the subject’s familiarization with the test and performance of forced exhalation toward the microphone.
KW - Copd
KW - FEV1/FVC
KW - High-resolution time-frequency
KW - Pulmonary function test
KW - Smartphone microphone
UR - http://www.scopus.com/inward/record.url?scp=84983502282&partnerID=8YFLogxK
U2 - 10.3390/s16081305
DO - 10.3390/s16081305
M3 - Article
C2 - 27548164
AN - SCOPUS:84983502282
SN - 1424-3210
VL - 16
JO - Sensors
JF - Sensors
IS - 8
M1 - 1305
ER -