Improvement of the biocompatibility of chitosan dermal scaffold by rigorous dry heat treatment

Ho Kim Chun, Hyun Sook Park, Jae Gin Yong, Youngsook Son, Sae Hwan Lim, Ju Choi Young, Ki Sook Park, Woong Park Chan

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)

Abstract

We have developed a rigorous heat treatment method to improve the biocompatibility of chitosan as a tissue-engineered scaffold. The chitosan scaffold was prepared by the controlled freezing and lyophilizing method using dilute acetic acid and then it was heat-treated at 110°C in vacuo for 1-3 days. To explore changes in the physicochemical properties of the heat-treated scaffold, we analyzed the degree of deacetylation by colloid titration with poly(vinyl potassium sulfate) and the structural changes were analyzed by scanning electron microscopy, Fourier transform infrared (FT-IR) spectroscopy, wide-angle X-ray diffractometry (WAXD), and lysozyme susceptibility. The degree of deacetylation of chitosan scaffolds decreased significantly from 85 to 30% as the heat treatment time increased. FT-IR spectroscopic and WAXD data indicated the formation of amide bonds between the amino groups of chitosan and acetic acids carbonyl group, and of interchain hydrogen bonding between the carbonyl groups in the C-6 residues of chitosan and the N-acetyl groups. Our rigorous heat treatment method causes the scaffold to become more susceptible to lysozyme treatment. We performed further examinations of the changes in the biocompatibility of the chitosan scaffold after rigorous heat treatment by measuring the initial cell binding capacity and cell growth rate. Human dermal fibroblasts (HDFs) adhere and spread more effectively to the heat-treated chitosan than to the untreated sample. When the cell growth of the HDFs on the film or the scaffold was analyzed by an MTT assay, we found that rigorous heat treatment stimulated cell growth by 1.5-1.95-fold relative to that of the untreated chitosan. We conclude that the rigorous dry heat treatment process increases the biocompatibility of the chitosan scaffold by decreasing the degree of deacetylation and by increasing cell attachment and growth.

Original languageEnglish
Pages (from-to)367-373
Number of pages7
JournalMacromolecular Research
Volume12
Issue number4
DOIs
Publication statusPublished - Aug 2004

Keywords

  • Chitosan
  • Cytocompatibility
  • Dermal scaffold
  • Heat treatment
  • Human dermal fibroblast

Fingerprint

Dive into the research topics of 'Improvement of the biocompatibility of chitosan dermal scaffold by rigorous dry heat treatment'. Together they form a unique fingerprint.

Cite this