Abstract
Middle East respiratory syndrome (MERS) is a threat to public health worldwide. A vaccine against the causative agent of MERS, MERS-coronavirus (MERS-CoV), is urgently needed. We previously identified a peptide ligand, Co4B, which can enhance antigen (Ag) delivery to the nasal mucosa and promote Ag-specific mucosal and systemic immune responses following intranasal immunization. MERS-CoV infects via the respiratory route; thus, we conjugated the Co4B ligand to the MERS-CoV spike protein receptor-binding domain (S-RBD), and used this to intranasally immunize C57BL/6 and human dipeptidyl peptidase 4-transgenic (hDPP4-Tg) mice. Ag-specific mucosal immunoglobulin (Ig) A and systemic IgG, together with virus-neutralizing activities, were highly induced in mice immunized with Co4B-conjugated S-RBD (S-RBD-Co4B) compared to those immunized with unconjugated S-RBD. Ag-specific T cell-mediated immunity was also induced in the spleen and lungs of mice intranasally immunized with S-RBD-Co4B. Intranasal immunization of hDPP4-Tg mice with S-RBD-Co4B reduced immune cell infiltration into the tissues of virus-challenged mice. Finally, S-RBD-Co4B-immunized mice exhibited were better protected against infection, more likely to survive, and exhibited less body weight loss. Collectively, our results suggest that S-RBD-Co4B could be used as an intranasal vaccine candidate against MERS-CoV infection.
Original language | English |
---|---|
Pages (from-to) | 714-725 |
Number of pages | 12 |
Journal | Vaccine |
Volume | 40 |
Issue number | 5 |
DOIs | |
Publication status | Published - 31 Jan 2022 |
Bibliographical note
Publisher Copyright:© 2021 Elsevier Ltd
Keywords
- Adjuvant
- Ligand
- MERS-CoV
- Recombinant antigen
- Vaccine