Abstract
We introduce a label-free spectroscopic method to classify subtypes of quinolone-nonsusceptible Escherichia coli (E. coli) isolates obtained from human blood cultures. Raman spectroscopy with a 30-nm gold-deposited, surface-enhanced Raman scattering (SERS) substrate was used to evaluate three multilocus sequencing typing (MLST)-predefined groups including E. coli ATCC25922, E. coli ST131:O75, and E. coli ST1193:O25b. Although there was a coffee-ring effect, the ring zone was selected at the ideal position to screen E. coli isolates. Strong Raman peaks were present at 1001–1004 cm−1 (CC aromatic ring breathing stretching vibrational mode of phenylalanine), 1447–1448 cm−1 (CH2 scissoring deformation vibrational mode), and 1667 cm−1 (amide I α-helix). Although the three MLST-predefined E. coli isolates had similar Raman spectral patterns, a support vector machine (SVM) learning algorithm-assisted principal component analysis (PCA) analysis had superior performance in detecting the presence of quinolone-nonsusceptible E. coli isolates as well as classifying similar microbes, such as quinolone-nonsusceptible E. coli ST131:O75 and E. coli ST1193:O25b isolates. Therefore, this label-free and nondestructive technique is likely to be useful for clinically diagnosing quinolone-nonsusceptible E. coli isolates with the MLST method.
Original language | English |
---|---|
Pages (from-to) | 177-182 |
Number of pages | 6 |
Journal | Microscopy Research and Technique |
Volume | 80 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Feb 2017 |
Bibliographical note
Publisher Copyright:© 2016 Wiley Periodicals, Inc.
Keywords
- Escherichia coli
- Raman spectroscopy
- multilocus sequence typing
- quinolone-nonsusceptible