Liquid supply and heat transfer performance of sintered Cu monolayer wicks for phase change heat transfer applications

Stephen Sharratt, Youngsuk Nam, Y. Sungtaek Ju

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

When combined with a bi-porous or a vertical liquid artery structure, thin porous layers of high thermal conductivity materials can provide high critical heat flux while maintaining low thermal resistance. They are therefore are very promising for applications in advanced heat pipes and vapor chambers. The present study characterizes the liquid supply and heat transfer performance of monolayers of sintered Cu powders. Three sets of monolayer samples are prepared by sintering Cu powders with different diameters (29, 59, 71 um). The measured heat transfer performance is relatively insensitive to the powder diameter in the low flux regime. At relatively high heat fluxes (> 20 W/cm2) monolayers with the two large diameter powders show similar liquid supply and heat transfer performance while the sample with the smallest powder size shows significantly degraded heat transfer performance due to local dryouts.

Original languageEnglish
Title of host publicationASME/JSME 2011 8th Thermal Engineering Joint Conference, AJTEC 2011
PublisherAmerican Society of Mechanical Engineers
ISBN (Print)9780791838921
DOIs
Publication statusPublished - 2011
EventASME/JSME 2011 8th Thermal Engineering Joint Conference, AJTEC 2011 - Honolulu, HI, United States
Duration: 13 Mar 201117 Mar 2011

Publication series

NameASME/JSME 2011 8th Thermal Engineering Joint Conference, AJTEC 2011

Conference

ConferenceASME/JSME 2011 8th Thermal Engineering Joint Conference, AJTEC 2011
Country/TerritoryUnited States
CityHonolulu, HI
Period13/03/1117/03/11

Fingerprint

Dive into the research topics of 'Liquid supply and heat transfer performance of sintered Cu monolayer wicks for phase change heat transfer applications'. Together they form a unique fingerprint.

Cite this