TY - JOUR
T1 - Metabolites identification for major active components of Agastache rugosa in rat by UPLC-Orbitap-MS
T2 - Comparison of the difference between metabolism as a single component and as a component in a multi-component extract
AU - Jang, Ah kyung
AU - Rashid, Md Mamunur
AU - Lee, Gakyung
AU - Kim, Doo Young
AU - Ryu, Hyung Won
AU - Oh, Sei Ryang
AU - Park, Jinyoung
AU - Lee, Hyunbeom
AU - Hong, Jongki
AU - Jung, Byung Hwa
N1 - Publisher Copyright:
© 2022 The Authors
PY - 2022/10/25
Y1 - 2022/10/25
N2 - Agastache rugosa (fisch. & C.A. Mey.) Kuntze (A. rugosa) is used in traditional medicine in Korea since it has variety of medicinal activities, such as antioxidant, anti-inflammatory, anti-photoaging. Acacetin, tilianin, and rosmarinic acid are the active components of A. rugosa but their metabolites have not yet been fully identified. The purpose of this study was to identify the metabolites of A. rugosa after oral administration in Sprague-Dawley rats. For this study, active components (acacetin, tilianin, rosmarinic acid) and A. rugosa extract were dissolved in 0.5% carboxymethyl cellulose sodium solution respectively and treated by oral gavage at a dose of 50 mg/kg (for single compounds) and 200 mg/kg (for A. rugosa extract). For metabolite identification, plasma, urine, and fecal samples were collected after oral administration and analyzed using liquid chromatography coupled with Orbitrap mass spectrometry (UPLC-Orbitrap-MS) for data acquisition and metabolite identification. Metabolite identification was performed by considering the mass difference of the metabolites from the parent compounds and using their exact m/z and MS/MS fragments. The main biotransformation of the major components of A. rugosa was hydrolysis to acacetin, followed by demethylation, methylation, and conjugation. That of rosmarinic acid is methylated and conjugated. There were differences in metabolism between the treatment of single active components and extract; some sulfate-conjugated metabolites or metabolic intermediates were only detected in the treatment of single active components. The reason for this is thought to be the low content of the active components in the extract, which react competitively with the components present in the extract in the metabolic process. This study provides valuable evidence for a comprehensive understanding of the metabolism of A. rugosa.
AB - Agastache rugosa (fisch. & C.A. Mey.) Kuntze (A. rugosa) is used in traditional medicine in Korea since it has variety of medicinal activities, such as antioxidant, anti-inflammatory, anti-photoaging. Acacetin, tilianin, and rosmarinic acid are the active components of A. rugosa but their metabolites have not yet been fully identified. The purpose of this study was to identify the metabolites of A. rugosa after oral administration in Sprague-Dawley rats. For this study, active components (acacetin, tilianin, rosmarinic acid) and A. rugosa extract were dissolved in 0.5% carboxymethyl cellulose sodium solution respectively and treated by oral gavage at a dose of 50 mg/kg (for single compounds) and 200 mg/kg (for A. rugosa extract). For metabolite identification, plasma, urine, and fecal samples were collected after oral administration and analyzed using liquid chromatography coupled with Orbitrap mass spectrometry (UPLC-Orbitrap-MS) for data acquisition and metabolite identification. Metabolite identification was performed by considering the mass difference of the metabolites from the parent compounds and using their exact m/z and MS/MS fragments. The main biotransformation of the major components of A. rugosa was hydrolysis to acacetin, followed by demethylation, methylation, and conjugation. That of rosmarinic acid is methylated and conjugated. There were differences in metabolism between the treatment of single active components and extract; some sulfate-conjugated metabolites or metabolic intermediates were only detected in the treatment of single active components. The reason for this is thought to be the low content of the active components in the extract, which react competitively with the components present in the extract in the metabolic process. This study provides valuable evidence for a comprehensive understanding of the metabolism of A. rugosa.
KW - Acacetin
KW - Agastache rugosa
KW - Metabolites identification UPLC-Orbitrap-MS
KW - Rosmarinic acid
KW - Tilianin
UR - http://www.scopus.com/inward/record.url?scp=85135822873&partnerID=8YFLogxK
U2 - 10.1016/j.jpba.2022.114976
DO - 10.1016/j.jpba.2022.114976
M3 - Article
C2 - 35939877
AN - SCOPUS:85135822873
SN - 0731-7085
VL - 220
JO - Journal of Pharmaceutical and Biomedical Analysis
JF - Journal of Pharmaceutical and Biomedical Analysis
M1 - 114976
ER -