Microwave-transparent metallic metamaterials for autonomous driving safety

Eun Joo Lee, Jun Young Kim, Young Bin Kim, Sun Kyung Kim

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Maintaining the surface transparency of protective covers using transparent heaters in extreme weather is imperative for enhancing safety in autonomous driving. However, achieving both high transmittance and low sheet resistance, two key performance indicators for transparent heaters, is inherently challenging. Here, inspired by metamaterial design, we report microwave-transparent, low-sheet-resistance heaters for automotive radars. Ultrathin (approximately one ten-thousandth of the wavelength), electrically connected metamaterials on a millimetre-thick dielectric cover provide near-unity transmission at specific frequencies within the W band (75–110 GHz), despite their metal filling ratio exceeding 70 %. These metamaterials yield the desired phase delay to adjust Fabry–Perot resonance at each target frequency. Fabricated microwave-transparent heaters exhibit exceptionally low sheet resistance (0.41 ohm/sq), thereby heating the dielectric cover above 180 °C at a nominal bias of 3 V. Defrosting tests demonstrate their thermal capability to swiftly remove thin ice layers in sub-zero temperatures.

Original languageEnglish
Article number4516
JournalNature Communications
Volume15
Issue number1
DOIs
Publication statusPublished - Dec 2024

Bibliographical note

Publisher Copyright:
© The Author(s) 2024.

Fingerprint

Dive into the research topics of 'Microwave-transparent metallic metamaterials for autonomous driving safety'. Together they form a unique fingerprint.

Cite this