Modeling and experiments of near-field thermophotovoltaic conversion: A review

Jaeman Song, Jihye Han, Minwoo Choi, Bong Jae Lee

Research output: Contribution to journalArticlepeer-review

39 Citations (Scopus)

Abstract

This article provides an in-depth review of charge transport models utilized to analyze the performance of near-field thermophotovoltaic (NF-TPV) devices, and a comprehensive examination of NF-TPV experiments performed to date. Researchers have used several models to theoretically analyze NF-TPV devices; however, each model can result in different performances of NF-TPV devices, particularly due to characteristics of near-field thermal radiation. For clarification, we sort up-to-date analysis models into four categories; the analytical approximation model, detailed balance analysis, minority carrier separation (MCS) model, and Poisson-drift–diffusion (PDD) model. Key assumptions of each model are enumerated, and the calculated results by each model are compared. For the review of experimental works, we first sort NF-TPV experiments according to the manner of gap control into positioner-, spacer-, and MEMS-based approaches. Then, we introduce the primary design configuration of each approach and the compelling experimental results achieved by state-of-the-art studies. In addition, advanced concepts of hybrid devices and multi-junction PV cells, proposed to further improve NF-TPV performance, are briefly introduced.

Original languageEnglish
Article number111556
JournalSolar Energy Materials and Solar Cells
Volume238
DOIs
Publication statusPublished - May 2022

Bibliographical note

Publisher Copyright:
© 2022 Elsevier B.V.

Keywords

  • Near-field radiation
  • Thermophotovoltaics

Fingerprint

Dive into the research topics of 'Modeling and experiments of near-field thermophotovoltaic conversion: A review'. Together they form a unique fingerprint.

Cite this