TY - JOUR
T1 - Near-real-time 3D Reconstruction of the Solar Coronal Parameters Based on the Magnetohydrodynamic Algorithm outside a Sphere Using Deep Learning
AU - Rahman, Sumiaya
AU - Jeong, Hyun Jin
AU - Siddique, Ashraf
AU - Moon, Yong Jae
AU - Lawrance, Bendict
N1 - Publisher Copyright:
© 2024. The Author(s). Published by the American Astronomical Society.
PY - 2024/3/1
Y1 - 2024/3/1
N2 - For the first time, we generate solar coronal parameters (density, magnetic field, radial velocity, and temperature) on a near-real-time basis by deep learning. For this, we apply the Pix2PixCC deep-learning model to three-dimensional (3D) distributions of these parameters: synoptic maps of the photospheric magnetic field as an input and the magnetohydrodynamic algorithm outside a sphere (MAS) results as an output. To generate the 3D structure of the solar coronal parameters from 1 to 30 solar radii, we train and evaluate 152 distinct deep-learning models. For each parameter, we consider the data of 169 Carrington rotations from 2010 June to 2023 February: 132 for training and 37 for testing. The key findings of our study are as follows: First, our deep-learning models successfully reconstruct the 3D distributions of coronal parameters from 1 to 30 solar radii with an average correlation coefficient of 0.98. Second, during the solar active and quiet periods, the AI-generated data exhibits consistency with the target MAS simulation data. Third, our deep-learning models for each parameter took a remarkably short time (about 16 s for each parameter) to generate the results with an NVIDIA Titan XP GPU. As the MAS simulation is a regularization model, we may significantly reduce the simulation time by using our results as an initial configuration to obtain an equilibrium condition. We hope that the generated 3D solar coronal parameters can be used for the near-real-time forecasting of heliospheric propagation of solar eruptions.
AB - For the first time, we generate solar coronal parameters (density, magnetic field, radial velocity, and temperature) on a near-real-time basis by deep learning. For this, we apply the Pix2PixCC deep-learning model to three-dimensional (3D) distributions of these parameters: synoptic maps of the photospheric magnetic field as an input and the magnetohydrodynamic algorithm outside a sphere (MAS) results as an output. To generate the 3D structure of the solar coronal parameters from 1 to 30 solar radii, we train and evaluate 152 distinct deep-learning models. For each parameter, we consider the data of 169 Carrington rotations from 2010 June to 2023 February: 132 for training and 37 for testing. The key findings of our study are as follows: First, our deep-learning models successfully reconstruct the 3D distributions of coronal parameters from 1 to 30 solar radii with an average correlation coefficient of 0.98. Second, during the solar active and quiet periods, the AI-generated data exhibits consistency with the target MAS simulation data. Third, our deep-learning models for each parameter took a remarkably short time (about 16 s for each parameter) to generate the results with an NVIDIA Titan XP GPU. As the MAS simulation is a regularization model, we may significantly reduce the simulation time by using our results as an initial configuration to obtain an equilibrium condition. We hope that the generated 3D solar coronal parameters can be used for the near-real-time forecasting of heliospheric propagation of solar eruptions.
UR - http://www.scopus.com/inward/record.url?scp=85185773304&partnerID=8YFLogxK
U2 - 10.3847/1538-4365/ad1877
DO - 10.3847/1538-4365/ad1877
M3 - Article
AN - SCOPUS:85185773304
SN - 0067-0049
VL - 271
JO - Astrophysical Journal, Supplement Series
JF - Astrophysical Journal, Supplement Series
IS - 1
M1 - 14
ER -