Novel blue multiresonance thermally activated delayed fluorescence host materials, including Ge-based bulky groups

Sangwook Park, Hyukmin Kwon, Hayoon Lee, Kiho Lee, Seokwoo Kang, Ki Ju Kim, Taekyung Kim, Jongwook Park

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

We synthesized three materials, namely, TDBA-Ge, mTDBA-Ge, and mTDBA-2Ge, as blue host emitters. These materials incorporate a tetraphenylgermanium (TPG) group with a germanium atom into the main backbone of 5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene (DOBNA), demonstrating multiple-resonance-induced thermally activated delayed fluorescence (MR-TADF). All three materials exhibited high thermal stability with a glass transition temperature (Tg) exceeding 100 °C. The increased molecular distance also demonstrated the inhibition of self-quenching between molecules in the packing. All three materials showed ΔEST values within 0.3 eV, confirming their potential for MR-TADF characteristics. Especially, mTDBA-2Ge exhibited the lowest ΔEST value of 0.11 eV among the three materials. When these host materials were doped with the conventional dopant ν-DABNA, efficient energy transfer between the two materials was observed, and the resulting device efficiency was confirmed. In comparison to TDBA-Ph, which lacks the TPG moiety and contains only phenyl groups, an approximately 1.5-1.8-fold increase in external quantum efficiency max (EQEmax) was observed. Among the three materials, mTDBA-2Ge exhibited the highest efficiency, with an EQEmax of 24.41%.

Original languageEnglish
Pages (from-to)4384-4391
Number of pages8
JournalJournal of Materials Chemistry C
Volume12
Issue number12
DOIs
Publication statusPublished - 21 Feb 2024

Bibliographical note

Publisher Copyright:
© 2024 The Royal Society of Chemistry.

Fingerprint

Dive into the research topics of 'Novel blue multiresonance thermally activated delayed fluorescence host materials, including Ge-based bulky groups'. Together they form a unique fingerprint.

Cite this