Numerical study of a solar thermophotovoltaic energy converter with high performance 2D photonic crystals

Youngsuk Nam, Yi Xiang Yeng, Peter Bermel, Marin Soljačić, Evelyn N. Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Solar thermophotovoltaic (STPV) systems convert solar energy into electricity via thermally radiated photons at tailored wavelength to increase energy conversion efficiency. In this work we report the design and analysis of a STPV using a high-fidelity 2D axisymmetric thermal-electrical hybrid model that includes thermal coupling between the absorber/emitter/PV cell and accounts for non-idealities such as temperature gradients and parasitic thermal losses. The radiative spectra of the absorber and emitter are engineered by using two-dimensional periodic square array of cylindrical holes on a tantalum (Ta) substrate. The optimal solar concentration and resulting temperature are determined by considering the energy losses associated with re-emission at the absorber, low energy (below band gap) emission at the emitter, and carrier thermalization/recombination in the PV cell. The modeling results suggest that the overall efficiency of a realistic planar STPV consisting of Ta PhCs and existing InGaAsSb PV cells with a filter can be as high as ∼8%. The use of high performance PhCs allows us to simplify the system layout and operate STPVs at a significantly lower optical concentration level and operating temperature compared with STPVs using metallic cavity receivers. This work shows the importance of photon engineering for the development of high efficiency STPVs and offers design guidelines for both the PhC absorber/emitter and the overall system.

Original languageEnglish
Title of host publicationASME 2012 Heat Transfer Summer Conf. Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
Pages179-185
Number of pages7
DOIs
Publication statusPublished - 2012
EventASME 2012 Heat Transfer Summer Conference Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012 - Rio Grande, Puerto Rico
Duration: 8 Jul 201212 Jul 2012

Publication series

NameASME 2012 Heat Transfer Summer Conf. Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
Volume1

Conference

ConferenceASME 2012 Heat Transfer Summer Conference Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
Country/TerritoryPuerto Rico
CityRio Grande
Period8/07/1212/07/12

Fingerprint

Dive into the research topics of 'Numerical study of a solar thermophotovoltaic energy converter with high performance 2D photonic crystals'. Together they form a unique fingerprint.

Cite this