On Graham partitions twisted by the Legendre symbol

Byungchan Kim, Ji Young Kim, Chong Gyu Lee, Sang June Lee, Poo Sung Park, Yoon Kyung Park

Research output: Contribution to journalArticlepeer-review

Abstract

We investigate when there is a partition of a positive integer n n, n = f (λ 1) + f (λ 2) + + f (λ ), n=f\left({\lambda }_{1})+f\left({\lambda }_{2})+\cdots +f\left({\lambda }_{\ell }), satisfying that 1 = χ p (λ 1) λ 1 + χ p (λ 2) λ 2 + + χ p (λ ) λ , 1=\frac{{\chi }_{p}\left({\lambda }_{1})}{{\lambda }_{1}}+\frac{{\chi }_{p}\left({\lambda }_{2})}{{\lambda }_{2}}+\cdots +\frac{{\chi }_{p}\left({\lambda }_{\ell })}{{\lambda }_{\ell }}, where χ p {\chi }_{p} is the Legendre symbol modulo prime p p and f (k) = k f\left(k)=k or the k k th m m -gonal number with m = 3 m=3, 4, or 5.

Original languageEnglish
JournalOpen Mathematics
Volume21
Issue number1
DOIs
Publication statusPublished - 1 Jan 2023

Bibliographical note

Publisher Copyright:
© 2023 the author(s), published by De Gruyter.

Keywords

  • Graham partition
  • Legendre symbol
  • polygonal number
  • quadratic twist
  • sum of reciprocals

Fingerprint

Dive into the research topics of 'On Graham partitions twisted by the Legendre symbol'. Together they form a unique fingerprint.

Cite this