TY - JOUR
T1 - Parallel discrete-event simulation schemes with heterogeneous processing elements
AU - Kim, Yup
AU - Kwon, Ikhyun
AU - Chae, Huiseung
AU - Yook, Soon Hyung
PY - 2014/7/29
Y1 - 2014/7/29
N2 - To understand the effects of nonidentical processing elements (PEs) on parallel discrete-event simulation (PDES) schemes, two stochastic growth models, the restricted solid-on-solid (RSOS) model and the Family model, are investigated by simulations. The RSOS model is the model for the PDES scheme governed by the Kardar-Parisi-Zhang equation (KPZ scheme). The Family model is the model for the scheme governed by the Edwards-Wilkinson equation (EW scheme). Two kinds of distributions for nonidentical PEs are considered. In the first kind computing capacities of PEs are not much different, whereas in the second kind the capacities are extremely widespread. The KPZ scheme on the complex networks shows the synchronizability and scalability regardless of the kinds of PEs. The EW scheme never shows the synchronizability for the random configuration of PEs of the first kind. However, by regularizing the arrangement of PEs of the first kind, the EW scheme is made to show the synchronizability. In contrast, EW scheme never shows the synchronizability for any configuration of PEs of the second kind.
AB - To understand the effects of nonidentical processing elements (PEs) on parallel discrete-event simulation (PDES) schemes, two stochastic growth models, the restricted solid-on-solid (RSOS) model and the Family model, are investigated by simulations. The RSOS model is the model for the PDES scheme governed by the Kardar-Parisi-Zhang equation (KPZ scheme). The Family model is the model for the scheme governed by the Edwards-Wilkinson equation (EW scheme). Two kinds of distributions for nonidentical PEs are considered. In the first kind computing capacities of PEs are not much different, whereas in the second kind the capacities are extremely widespread. The KPZ scheme on the complex networks shows the synchronizability and scalability regardless of the kinds of PEs. The EW scheme never shows the synchronizability for the random configuration of PEs of the first kind. However, by regularizing the arrangement of PEs of the first kind, the EW scheme is made to show the synchronizability. In contrast, EW scheme never shows the synchronizability for any configuration of PEs of the second kind.
UR - http://www.scopus.com/inward/record.url?scp=84905457404&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.90.012814
DO - 10.1103/PhysRevE.90.012814
M3 - Article
C2 - 25122349
AN - SCOPUS:84905457404
SN - 1539-3755
VL - 90
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 1
M1 - 012814
ER -