Abstract
We demonstrate a new strategy of PEGylation over core-shell MOFs of HKUST-1 and Cu-MOF-2 by a solvothermal method. The novel synthesized PEGylated core-shell MOFs has synergistic enhancement in terms of physicochemical and biological properties. FTIR spectroscopy and XRD analysis described the bonding characteristics of the double-shelled-core MOFs PEG@HKUST-1@CuMOF-2 and PEG@CuMOF-2@HKUST-1. XPS and EDAX spectroscopy confirmed the structural features of the PEG@core-shell MOFs. The as-synthesized PEG-modified core-shell MOFs showed a readily identifiable morphology with a reduction in particle size. The significant observation from SEM and TEM was that agglomeration disappeared completely, and the morphology of individual core-shell MOFs was clearly revealed. BET analysis provided the surface characteristics of MOF compounds. The chemical states of frameworks were established by XPS. The designed PEG-modified copper MOFs were evaluated for their activity against Gram-positive (Staphylococcus aureus, Enterococcus faecalis), Gram-negative (Escherichia coli and Klebsiella pneumoniae) bacterial species and activity against fungal species (Aspergillus niger and Candida albicans). This research work highlights a facile and synergistic approach to design promising biocompatible nano-dimensional core-shell MOFs for biological applications.
Original language | English |
---|---|
Pages (from-to) | 10665-10677 |
Number of pages | 13 |
Journal | Journal of Materials Chemistry B |
Volume | 11 |
Issue number | 44 |
DOIs | |
Publication status | Published - 16 Oct 2023 |
Bibliographical note
Publisher Copyright:© 2023 The Royal Society of Chemistry.