TY - JOUR
T1 - Predicting brain age with global-local attention network from multimodal neuroimaging data
T2 - Accuracy, generalizability, and behavioral associations
AU - Moon, Sung Hwan
AU - Lee, Junhyeok
AU - Lee, Won Hee
N1 - Publisher Copyright:
© 2024
PY - 2025/1
Y1 - 2025/1
N2 - Brain age, an emerging biomarker for brain diseases and aging, is typically predicted using single-modality T1-weighted structural MRI data. This study investigates the benefits of integrating structural MRI with diffusion MRI to enhance brain age prediction. We propose an attention-based deep learning model that fuses global-context information from structural MRI with local details from diffusion metrics. The model was evaluated using two large datasets: the Human Connectome Project (HCP, n = 1064, age 22–37) and the Cambridge Center for Aging and Neuroscience (Cam-CAN, n = 639, age 18–88). It was tested for generalizability and robustness on three independent datasets (n = 546, age 20–86), reproducibility on a test-retest dataset (n = 44, age 22–35), and longitudinal consistency (n = 129, age 46–92). We also examined the relationship between predicted brain age and behavioral measures. Results showed that the multimodal model improved prediction accuracy, achieving mean absolute errors (MAEs) of 2.44 years in the HCP dataset (sagittal plane) and 4.36 years in the Cam-CAN dataset (axial plane). The corresponding R2 values were 0.258 and 0.914, respectively, reflecting the model's ability to explain variance in the predictions across both datasets. Compared to single-modality models, the multimodal approach showed better generalization, reducing MAEs by 10–76 % and enhancing robustness by 22–82 %. While the multimodal model exhibited superior reproducibility, the sMRI model showed slightly better longitudinal consistency. Importantly, the multimodal model revealed unique associations between predicted brain age and behavioral measures, such as walking endurance and loneliness in the HCP dataset, which were not detected with chronological age alone. In the Cam-CAN dataset, brain age and chronological age exhibited similar correlations with behavioral measures. By integrating sMRI and dMRI through an attention-based model, our proposed approach enhances predictive accuracy and provides deeper insights into the relationship between brain aging and behavior.
AB - Brain age, an emerging biomarker for brain diseases and aging, is typically predicted using single-modality T1-weighted structural MRI data. This study investigates the benefits of integrating structural MRI with diffusion MRI to enhance brain age prediction. We propose an attention-based deep learning model that fuses global-context information from structural MRI with local details from diffusion metrics. The model was evaluated using two large datasets: the Human Connectome Project (HCP, n = 1064, age 22–37) and the Cambridge Center for Aging and Neuroscience (Cam-CAN, n = 639, age 18–88). It was tested for generalizability and robustness on three independent datasets (n = 546, age 20–86), reproducibility on a test-retest dataset (n = 44, age 22–35), and longitudinal consistency (n = 129, age 46–92). We also examined the relationship between predicted brain age and behavioral measures. Results showed that the multimodal model improved prediction accuracy, achieving mean absolute errors (MAEs) of 2.44 years in the HCP dataset (sagittal plane) and 4.36 years in the Cam-CAN dataset (axial plane). The corresponding R2 values were 0.258 and 0.914, respectively, reflecting the model's ability to explain variance in the predictions across both datasets. Compared to single-modality models, the multimodal approach showed better generalization, reducing MAEs by 10–76 % and enhancing robustness by 22–82 %. While the multimodal model exhibited superior reproducibility, the sMRI model showed slightly better longitudinal consistency. Importantly, the multimodal model revealed unique associations between predicted brain age and behavioral measures, such as walking endurance and loneliness in the HCP dataset, which were not detected with chronological age alone. In the Cam-CAN dataset, brain age and chronological age exhibited similar correlations with behavioral measures. By integrating sMRI and dMRI through an attention-based model, our proposed approach enhances predictive accuracy and provides deeper insights into the relationship between brain aging and behavior.
KW - Attention
KW - Brain age prediction
KW - Deep learning
KW - Diffusion MRI
KW - Multimodal MRI
KW - Structural MRI
KW - Transformer
UR - http://www.scopus.com/inward/record.url?scp=85208990024&partnerID=8YFLogxK
U2 - 10.1016/j.compbiomed.2024.109411
DO - 10.1016/j.compbiomed.2024.109411
M3 - Article
AN - SCOPUS:85208990024
SN - 0010-4825
VL - 184
JO - Computers in Biology and Medicine
JF - Computers in Biology and Medicine
M1 - 109411
ER -