TY - JOUR
T1 - Protective effect of 7-hydroxyl-1-methylindole-3-acetonitrile on the intestinal mucosal damage response to inflammation in mice with DSS-induced colitis
AU - Chung, Kyung Sook
AU - Park, Sang Eun
AU - Lee, Jung Hun
AU - Kim, Su Yeon
AU - Han, Hee Soo
AU - Lee, Yong Sup
AU - Jung, Seang Hwan
AU - Jang, Eungyeong
AU - Lee, Sangmin
AU - Lee, Kyung Tae
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2023/1/25
Y1 - 2023/1/25
N2 - Ulcerative colitis (UC), a pathological condition of inflammatory bowel disease, is a chronic inflammatory disorder that involves an abnormal immune response and epithelial barrier dysfunction. Although we have previously reported the anti-inflammatory effects of 7-hydroxyl-1-methylindole-3-acetonitrile (7-HMIA), a synthesized analog of arvelexin on macrophages and paw edema, its anti-colitis effect and its mechanism are not known. In this study, colitis was induced in mice model by 4% (w/v) dextran sodium sulfate (DSS) solution in drinking water for 9 days. At the same time, from the first day of administering drinking water containing DSS, the animals were treated with 5-aminosalicylic acid (5-ASA), 75 mg/kg/day, orally) or 7-HMIA (10 or 20 mg/kg/day, intraperitoneally), depending on the experimental group, respectively. The studies were terminated on the tenth day of the experiment. Our data showed that 7-HMIA reduced the disease activity index and spleen/body weight (S/B) ratio, and improved the shortened colon length comparable to the effects of 5-ASA observed in the DSS-exposed mice. 7-HMIA, like 5-ASA, inhibited the histological damage, such as a thickened colonic muscle layer and shortened crypt length in the colon of the mice with DSS-induced colitis. 7-HMIA restored the tight junction-related proteins (occludin, claudin-1, and claudin-2) and epithelial-mesenchymal transition-mediated proteins (E-cadherin, N-cadherin, and vimentin) in the colon tissue of mice with DSS-induced colitis. Additionally, 7-HMIA (20 mg/kg/day) showed the inhibitory effects similar to that of 5-ASA on the myeloperoxidase activity, interleukin (IL)-6 production, and expression levels of inducible nitric oxide synthase (iNOS), and even showed greater inhibition of IL-1β production in the DSS-induced mice. Furthermore, the DSS-induced activation of nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) were effectively suppressed by 7-HMIA treatment like the effects of 5-ASA. Overall, our findings revealed that 7-HMIA decreased the severity of colitis by protecting the inflamed mucosal barrier by interfering with NF-κB and STAT3 activation.
AB - Ulcerative colitis (UC), a pathological condition of inflammatory bowel disease, is a chronic inflammatory disorder that involves an abnormal immune response and epithelial barrier dysfunction. Although we have previously reported the anti-inflammatory effects of 7-hydroxyl-1-methylindole-3-acetonitrile (7-HMIA), a synthesized analog of arvelexin on macrophages and paw edema, its anti-colitis effect and its mechanism are not known. In this study, colitis was induced in mice model by 4% (w/v) dextran sodium sulfate (DSS) solution in drinking water for 9 days. At the same time, from the first day of administering drinking water containing DSS, the animals were treated with 5-aminosalicylic acid (5-ASA), 75 mg/kg/day, orally) or 7-HMIA (10 or 20 mg/kg/day, intraperitoneally), depending on the experimental group, respectively. The studies were terminated on the tenth day of the experiment. Our data showed that 7-HMIA reduced the disease activity index and spleen/body weight (S/B) ratio, and improved the shortened colon length comparable to the effects of 5-ASA observed in the DSS-exposed mice. 7-HMIA, like 5-ASA, inhibited the histological damage, such as a thickened colonic muscle layer and shortened crypt length in the colon of the mice with DSS-induced colitis. 7-HMIA restored the tight junction-related proteins (occludin, claudin-1, and claudin-2) and epithelial-mesenchymal transition-mediated proteins (E-cadherin, N-cadherin, and vimentin) in the colon tissue of mice with DSS-induced colitis. Additionally, 7-HMIA (20 mg/kg/day) showed the inhibitory effects similar to that of 5-ASA on the myeloperoxidase activity, interleukin (IL)-6 production, and expression levels of inducible nitric oxide synthase (iNOS), and even showed greater inhibition of IL-1β production in the DSS-induced mice. Furthermore, the DSS-induced activation of nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) were effectively suppressed by 7-HMIA treatment like the effects of 5-ASA. Overall, our findings revealed that 7-HMIA decreased the severity of colitis by protecting the inflamed mucosal barrier by interfering with NF-κB and STAT3 activation.
KW - 7-Hydroxyl-1-methylindole-3-acetonitrile
KW - DSS-Induced colitis
KW - Inflammatory cytokine
KW - Membrane permeability
KW - Tight junction
UR - http://www.scopus.com/inward/record.url?scp=85144401320&partnerID=8YFLogxK
U2 - 10.1016/j.cbi.2022.110316
DO - 10.1016/j.cbi.2022.110316
M3 - Article
C2 - 36543318
AN - SCOPUS:85144401320
SN - 0009-2797
VL - 370
JO - Chemico-Biological Interactions
JF - Chemico-Biological Interactions
M1 - 110316
ER -