Reversible writing/deleting of magnetic skyrmions through hydrogen adsorption/desorption

Gong Chen, Colin Ophus, Alberto Quintana, Heeyoung Kwon, Changyeon Won, Haifeng Ding, Yizheng Wu, Andreas K. Schmid, Kai Liu

Research output: Contribution to journalArticlepeer-review

46 Citations (Scopus)

Abstract

Magnetic skyrmions are topologically nontrivial spin textures with envisioned applications in energy-efficient magnetic information storage. Toggling the presence of magnetic skyrmions via writing/deleting processes is essential for spintronics applications, which usually require the application of a magnetic field, a gate voltage or an electric current. Here we demonstrate the reversible field-free writing/deleting of skyrmions at room temperature, via hydrogen chemisorption/desorption on the surface of Ni and Co films. Supported by Monte-Carlo simulations, the skyrmion creation/annihilation is attributed to the hydrogen-induced magnetic anisotropy change on ferromagnetic surfaces. We also demonstrate the role of hydrogen and oxygen on magnetic anisotropy and skyrmion deletion on other magnetic surfaces. Our results open up new possibilities for designing skyrmionic and magneto-ionic devices.

Original languageEnglish
Article number1350
JournalNature Communications
Volume13
Issue number1
DOIs
Publication statusPublished - Dec 2022

Bibliographical note

Publisher Copyright:
© 2022, The Author(s).

Fingerprint

Dive into the research topics of 'Reversible writing/deleting of magnetic skyrmions through hydrogen adsorption/desorption'. Together they form a unique fingerprint.

Cite this