TY - JOUR
T1 - Rosarugosides A and D from Rosa rugosa Flower Buds
T2 - Their Potential Anti-Skin-Aging Effects in TNF-α-Induced Human Dermal Fibroblasts
AU - Kim, Kang Sub
AU - Son, So Ri
AU - Choi, Yea Jung
AU - Kim, Yejin
AU - Ahn, Si Young
AU - Jang, Dae Sik
AU - Lee, Sullim
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/5
Y1 - 2024/5
N2 - This present study investigated the anti-skin-aging properties of Rosa rugosa. Initially, phenolic compounds were isolated from a hot water extract of Rosa rugosa’s flower buds. Through repeated chromatography (column chromatography, MPLC, and prep HPLC), we identified nine phenolic compounds (1–9), including a previously undescribed depside, rosarugoside D (1). The chemical structure of 1 was elucidated via NMR, HR-MS, UV, and hydrolysis. Next, in order to identify bioactive compounds that are effective against TNF-α-induced NHDF cells, we measured intracellular ROS production in samples treated with each of the isolated compounds (1–9). All isolates reduced the level of ROS at a concentration of 10 μM. Particularly, two depsides—rosarugosides A and D (2 and 1)—significantly inhibited ROS expression in TNF-α-induced NHDFs compared to the other phenolic compounds. Subsequently, the production of MMP-1 and procollagen type Ι α1 by these two depsides was examined. Remarkably, rosarugoside A (2) significantly decreased MMP-1 secretion at all concentrations. In contrast, rosarugoside D (1) regulated the expression of procollagen type Ι α1. These findings collectively suggest that Rosa rugosa extracts and their isolated compounds, rosarugosides A (2) and D (1), hold significant potential for protecting against aging and skin damage. Overall, these findings suggest that Rosa rugosa extracts and their isolated compounds, rosarugosides A (2) and D (1), have the potential to prevent and protect against aging and skin damage, although more specific quantitative analysis is needed.
AB - This present study investigated the anti-skin-aging properties of Rosa rugosa. Initially, phenolic compounds were isolated from a hot water extract of Rosa rugosa’s flower buds. Through repeated chromatography (column chromatography, MPLC, and prep HPLC), we identified nine phenolic compounds (1–9), including a previously undescribed depside, rosarugoside D (1). The chemical structure of 1 was elucidated via NMR, HR-MS, UV, and hydrolysis. Next, in order to identify bioactive compounds that are effective against TNF-α-induced NHDF cells, we measured intracellular ROS production in samples treated with each of the isolated compounds (1–9). All isolates reduced the level of ROS at a concentration of 10 μM. Particularly, two depsides—rosarugosides A and D (2 and 1)—significantly inhibited ROS expression in TNF-α-induced NHDFs compared to the other phenolic compounds. Subsequently, the production of MMP-1 and procollagen type Ι α1 by these two depsides was examined. Remarkably, rosarugoside A (2) significantly decreased MMP-1 secretion at all concentrations. In contrast, rosarugoside D (1) regulated the expression of procollagen type Ι α1. These findings collectively suggest that Rosa rugosa extracts and their isolated compounds, rosarugosides A (2) and D (1), hold significant potential for protecting against aging and skin damage. Overall, these findings suggest that Rosa rugosa extracts and their isolated compounds, rosarugosides A (2) and D (1), have the potential to prevent and protect against aging and skin damage, although more specific quantitative analysis is needed.
KW - MMP-1
KW - ROS
KW - Rosa rugosa
KW - TNF-α
KW - depsides
KW - procollagen type Ι α1
UR - http://www.scopus.com/inward/record.url?scp=85192710325&partnerID=8YFLogxK
U2 - 10.3390/plants13091266
DO - 10.3390/plants13091266
M3 - Article
AN - SCOPUS:85192710325
SN - 2223-7747
VL - 13
JO - Plants
JF - Plants
IS - 9
M1 - 1266
ER -