Single-Walled Carbon Nanotubes Decorated with Dendrimer-Encapsulated Platinum Nanoparticles as Catalytic Immobilization Matrix for Amperometric Sensing of Glutamate

Chang Seuk Lee, Youngwon Ju, Sujin Shim, Joohoon Kim, Tae Hyun Kim

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Herein, we report the functional decoration of single-walled carbon nanotubes (swCNTs) with Pt dendrimer-encapsulated nanoparticles (Pt DENs) (dia. (1.78 ± 0.18) nm) for the amperometric sensing of glutamate. The functional decoration of swCNTs was carried out via electrochemical grafting of Pt DENs onto swCNTs, and subsequent cross-linking of glutamate oxidase (GluOx) enzymes to the grafted Pt DENs on swCNT surfaces. The critical role of Pt DENs as catalytic immobilization matrix allowed both the immobilization of GluOx enzymes while maintaining the enzymatic activity of GluOx, and the electrocatalytic oxidation of H₂O₂ generated enzymatically in the presence of glutamate. Taking advantage of Pt DENs as catalytic immobilization matrix, the resulting swCNTs films, denoted as GluOx/Pt DEN/swCNTs, were applied as amperometric sensing platforms that display superior analytical characteristics, including sensitivity, selectivity, stability, and reproducibility, to the non-catalytic counterpart (i.e., GluOx/swCNTs), which led to the promising application of GluOx/Pt DEN/swCNTs to the practical analysis of glutamate in real samples.

Original languageEnglish
Pages (from-to)2321-2331
Number of pages11
JournalJournal of Biomedical Nanotechnology
Volume15
Issue number12
DOIs
Publication statusPublished - 1 Dec 2019

Fingerprint

Dive into the research topics of 'Single-Walled Carbon Nanotubes Decorated with Dendrimer-Encapsulated Platinum Nanoparticles as Catalytic Immobilization Matrix for Amperometric Sensing of Glutamate'. Together they form a unique fingerprint.

Cite this