TY - GEN
T1 - Surface deposition of nanoparticles during pool boiling of nanofluids and its effects on CHF enhancement using nanofluids
AU - Kim, Hyung Dae
AU - Kim, Moo Hwan
N1 - Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.
PY - 2007
Y1 - 2007
N2 - This paper is concerned about mechanism of outstanding CHF enhancement phenomena using nanofluids, a subject with academically and industrially remarkable interest. Pool boiling experiments using an electrically heated horizontal wire were carried out with various water-based nanofluids containing Ag, Al2O3, SiO2, and TiO2 nanoparticles. The results showed that nanoparticle deposition on the heater surface occurred during pool boiling of nanofluids, and that the effect of nanoparticle porous layer on CHF could explain enough the CHF enhancement of nanofluids. Then the porous surface was characterized using surface wettability and capillary wicking performance, which are the significant properties of boiling surface influencing CHF. Discussion of the results suggested that the outstandingly enhanced CHF performances of nanofluids under the nucleate pool boiling were associated with enhanced surface wettability and liquid suction effect due to capillary wicking on the nanoparticle-deposited surface.
AB - This paper is concerned about mechanism of outstanding CHF enhancement phenomena using nanofluids, a subject with academically and industrially remarkable interest. Pool boiling experiments using an electrically heated horizontal wire were carried out with various water-based nanofluids containing Ag, Al2O3, SiO2, and TiO2 nanoparticles. The results showed that nanoparticle deposition on the heater surface occurred during pool boiling of nanofluids, and that the effect of nanoparticle porous layer on CHF could explain enough the CHF enhancement of nanofluids. Then the porous surface was characterized using surface wettability and capillary wicking performance, which are the significant properties of boiling surface influencing CHF. Discussion of the results suggested that the outstandingly enhanced CHF performances of nanofluids under the nucleate pool boiling were associated with enhanced surface wettability and liquid suction effect due to capillary wicking on the nanoparticle-deposited surface.
UR - http://www.scopus.com/inward/record.url?scp=37249052234&partnerID=8YFLogxK
U2 - 10.1115/ICNMM2007-30071
DO - 10.1115/ICNMM2007-30071
M3 - Conference contribution
AN - SCOPUS:37249052234
SN - 079184272X
SN - 9780791842720
T3 - Proceedings of the 5th International Conference on Nanochannels, Microchannels and Minichannels, ICNMM2007
SP - 783
EP - 788
BT - Proceedings of the 5th International Conference on Nanochannels, Microchannels and Minichannels, ICNMM2007
T2 - 5th International Conference on Nanochannels, Microchannels and Minichannels, ICNMM2007
Y2 - 18 June 2007 through 20 June 2007
ER -