Towards Robust Federated Learning via Logits Calibration on Non-IID Data

Yu Qiao, Apurba Adhikary, Chaoning Zhang, Choong Seon Hong

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks. However, recent studies have shown that FL is vulnerable to adversarial examples (AEs), leading to a significant drop in its performance. Meanwhile, the non-independent and identically distributed (non-IID) challenge of data distribution between edge devices can further degrade the performance of models. Consequently, both AEs and non-IID pose challenges to deploying robust learning models at the edge. In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks, which can be termed as federated adversarial training (FAT). Moreover, we address the non-IID challenge by implementing a simple yet effective logits calibration strategy under the FAT framework, which can enhance the robustness of models when subjected to adversarial attacks. Specifically, we employ a direct strategy to adjust the logits output by assigning higher weights to classes with small samples during training. This approach effectively tackles the class imbalance in the training data, with the goal of mitigating biases between local and global models. Experimental results on three dataset benchmarks, MNIST, Fashion-MNIST, and CIFAR-10 show that our strategy achieves competitive results in natural and robust accuracy compared to several baselines.

Original languageEnglish
Title of host publicationProceedings of IEEE/IFIP Network Operations and Management Symposium 2024, NOMS 2024
EditorsJames Won-Ki Hong, Seung-Joon Seok, Yuji Nomura, You-Chiun Wang, Baek-Young Choi, Myung-Sup Kim, Roberto Riggio, Meng-Hsun Tsai, Carlos Raniery Paula dos Santos
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350327939
DOIs
Publication statusPublished - 2024
Event2024 IEEE/IFIP Network Operations and Management Symposium, NOMS 2024 - Seoul, Korea, Republic of
Duration: 6 May 202410 May 2024

Publication series

NameProceedings of IEEE/IFIP Network Operations and Management Symposium 2024, NOMS 2024

Conference

Conference2024 IEEE/IFIP Network Operations and Management Symposium, NOMS 2024
Country/TerritoryKorea, Republic of
CitySeoul
Period6/05/2410/05/24

Bibliographical note

Publisher Copyright:
© 2024 IEEE.

Keywords

  • Federated learning
  • adversarial examples
  • adversarial training
  • edge network management
  • logits calibration
  • non-IID

Fingerprint

Dive into the research topics of 'Towards Robust Federated Learning via Logits Calibration on Non-IID Data'. Together they form a unique fingerprint.

Cite this