TY - JOUR
T1 - Transcranial direct current stimulation (tDCS) of frontal cortex decreases performance on the WAIS-IV intelligence test
AU - Sellers, Kristin K.
AU - Mellin, Juliann M.
AU - Lustenberger, Caroline M.
AU - Boyle, Michael R.
AU - Lee, Won Hee
AU - Peterchev, Angel V.
AU - Fröhlich, Flavio
N1 - Publisher Copyright:
© 2015 Elsevier B.V.
PY - 2015/9/1
Y1 - 2015/9/1
N2 - Transcranial direct current stimulation (tDCS) modulates excitability of motor cortex. However, there is conflicting evidence about the efficacy of this non-invasive brain stimulation modality to modulate performance on cognitive tasks. Previous work has tested the effect of tDCS on specific facets of cognition and executive processing. However, no randomized, double-blind, sham-controlled study has looked at the effects of tDCS on a comprehensive battery of cognitive processes. The objective of this study was to test if tDCS had an effect on performance on a comprehensive assay of cognitive processes, a standardized intelligence quotient (IQ) test. The study consisted of two substudies and followed a double-blind, between-subjects, sham-controlled design. In total, 41 healthy adult participants were included in the final analysis. These participants completed the Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV) as a baseline measure. At least one week later, participants in substudy 1 received either bilateral tDCS (anodes over both F4 and F3, cathode over Cz, 2 mA at each anode for 20 min) or active sham tDCS (2 mA for 40 s), and participants in substudy 2 received either right or left tDCS (anode over either F4 or F3, cathode over Cz, 2 mA for 20 min). In both studies, the WAIS-IV was immediately administered following stimulation to assess for performance differences induced by bilateral and unilateral tDCS. Compared to sham stimulation, right, left, and bilateral tDCS reduced improvement between sessions on Full Scale IQ and the Perceptual Reasoning Index. This demonstration that frontal tDCS selectively degraded improvement on specific metrics of the WAIS-IV raises important questions about the often proposed role of tDCS in cognitive enhancement.
AB - Transcranial direct current stimulation (tDCS) modulates excitability of motor cortex. However, there is conflicting evidence about the efficacy of this non-invasive brain stimulation modality to modulate performance on cognitive tasks. Previous work has tested the effect of tDCS on specific facets of cognition and executive processing. However, no randomized, double-blind, sham-controlled study has looked at the effects of tDCS on a comprehensive battery of cognitive processes. The objective of this study was to test if tDCS had an effect on performance on a comprehensive assay of cognitive processes, a standardized intelligence quotient (IQ) test. The study consisted of two substudies and followed a double-blind, between-subjects, sham-controlled design. In total, 41 healthy adult participants were included in the final analysis. These participants completed the Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV) as a baseline measure. At least one week later, participants in substudy 1 received either bilateral tDCS (anodes over both F4 and F3, cathode over Cz, 2 mA at each anode for 20 min) or active sham tDCS (2 mA for 40 s), and participants in substudy 2 received either right or left tDCS (anode over either F4 or F3, cathode over Cz, 2 mA for 20 min). In both studies, the WAIS-IV was immediately administered following stimulation to assess for performance differences induced by bilateral and unilateral tDCS. Compared to sham stimulation, right, left, and bilateral tDCS reduced improvement between sessions on Full Scale IQ and the Perceptual Reasoning Index. This demonstration that frontal tDCS selectively degraded improvement on specific metrics of the WAIS-IV raises important questions about the often proposed role of tDCS in cognitive enhancement.
KW - Brain stimulation
KW - IQ
KW - Intelligence
KW - Perceptual reasoning
KW - TDCS
KW - WAIS-IV
UR - http://www.scopus.com/inward/record.url?scp=84929208076&partnerID=8YFLogxK
U2 - 10.1016/j.bbr.2015.04.031
DO - 10.1016/j.bbr.2015.04.031
M3 - Article
C2 - 25934490
AN - SCOPUS:84929208076
SN - 0166-4328
VL - 290
SP - 32
EP - 44
JO - Behavioural Brain Research
JF - Behavioural Brain Research
ER -