TY - JOUR
T1 - Uncovering the centrality of mono-dentate SO32-/SO42- modifiers grafted on a metal vanadate in accelerating wet NOX reduction and poison pyrolysis
AU - Lee, Seokhyun
AU - Ha, Heon Phil
AU - Lee, Jung Hyun
AU - Kim, Jongsik
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/10/15
Y1 - 2023/10/15
N2 - NOX rarely binds with labile oxygens of catalytic solids, whose Lewis acidic (LA) species possess higher binding strengths with NH3 (ENH3) and H2O than Brönsted acidic counterparts (BA--H+; -OH), oftentimes leading to elevate energy barrier (EBARRIER) and weaken H2O tolerance, respectively. These limit NH3-assisted wet NOX reduction via Langmuir-Hinshelwood-type or Eley-Rideal (ER)-type model on LA species, while leaving ER-type analogue on BA--H+ species proper to reduce wet NOX. Given hard-to-regulate strength/amount of -OH species and occasional association between ENH3 and EBARRIER, Ni1V2O6 (Ni1) was rationally chosen as a platform to isolate mono-dentate SO32-/SO42- species for use as BA--H+ bonds via protonation to increase collision frequency (k’APP,0) alongside with disclosure of advantages of SO32-/SO42--functionalized Ni1V2O6 (Ni1-S) over Ni1 in reducing wet NOX. Ni1-S outperformed Ni1 in achieving a larger BA--H+ quantity (k’APP,0↑), increasing H2O tolerance, and elevating oxygen mobility, thus promoting NOX reduction activity/consequences under SO2-excluding gases. V2O5-WO3 composite simulating a commercial catalyst could isolate mono-dentate SO32-/SO42- species and served as a control (V2O5-WO3-S) for comparison. Ni1-S was superior to V2O5-WO3-S in evading ammonium (bi-)sulfate (AS/ABS) poison accumulation and expediting AS/ABS pyrolysis efficiency, thereby improving AS/ABS resistance under SO2-including gases, while enhancing resistance against hydro-thermal aging.
AB - NOX rarely binds with labile oxygens of catalytic solids, whose Lewis acidic (LA) species possess higher binding strengths with NH3 (ENH3) and H2O than Brönsted acidic counterparts (BA--H+; -OH), oftentimes leading to elevate energy barrier (EBARRIER) and weaken H2O tolerance, respectively. These limit NH3-assisted wet NOX reduction via Langmuir-Hinshelwood-type or Eley-Rideal (ER)-type model on LA species, while leaving ER-type analogue on BA--H+ species proper to reduce wet NOX. Given hard-to-regulate strength/amount of -OH species and occasional association between ENH3 and EBARRIER, Ni1V2O6 (Ni1) was rationally chosen as a platform to isolate mono-dentate SO32-/SO42- species for use as BA--H+ bonds via protonation to increase collision frequency (k’APP,0) alongside with disclosure of advantages of SO32-/SO42--functionalized Ni1V2O6 (Ni1-S) over Ni1 in reducing wet NOX. Ni1-S outperformed Ni1 in achieving a larger BA--H+ quantity (k’APP,0↑), increasing H2O tolerance, and elevating oxygen mobility, thus promoting NOX reduction activity/consequences under SO2-excluding gases. V2O5-WO3 composite simulating a commercial catalyst could isolate mono-dentate SO32-/SO42- species and served as a control (V2O5-WO3-S) for comparison. Ni1-S was superior to V2O5-WO3-S in evading ammonium (bi-)sulfate (AS/ABS) poison accumulation and expediting AS/ABS pyrolysis efficiency, thereby improving AS/ABS resistance under SO2-including gases, while enhancing resistance against hydro-thermal aging.
KW - Ammonium (bi-)sulfate
KW - NO reduction
KW - Nickel vanadate
KW - SO/SO functionality
KW - mono-dentate
UR - http://www.scopus.com/inward/record.url?scp=85168491151&partnerID=8YFLogxK
U2 - 10.1016/j.jhazmat.2023.132278
DO - 10.1016/j.jhazmat.2023.132278
M3 - Article
C2 - 37619273
AN - SCOPUS:85168491151
SN - 0304-3894
VL - 460
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
M1 - 132278
ER -