Unique phonon modes of a CH3NH3PbBr3 hybrid perovskite film without the influence of defect structures: an attempt toward a novel THz-based application

Inhee Maeng, Seungjun Lee, Hiroshi Tanaka, Jung Ho Yun, Shenghao Wang, Masakazu Nakamura, Young Kyun Kwon, Min Cherl Jung

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

The exploration of new physical properties for various THz-based applications, such as THz-wave sensing, modulation, and imaging devices, is a key challenge in the research on organic–inorganic hybrid perovskite materials. These THz-based applications require satisfactory, sensitive, and stable absorption properties with values between 0.5 and 3 THz. To achieve these properties, candidate materials should possess a purified structure that induces regular and fixed phonon modes without any defects or impurities. CH3NH3PbBr3, an organic–inorganic hybrid perovskite thin film produced by a sequential vacuum evaporation method on a flexible PET substrate, was investigated in this study. Although the thin film contains only molecular defects related to CH3NH2 incorporated into the perovskite structure, our THz-wave absorption measurement and first-principles simulation confirmed that these molecular defects do not influence the three phonon modes originating from the transverse vibration (0.8 THz), the longitudinal optical vibrations (1.4 THz) of the Pb–Br–Pb bonds, and the optical Br vibration (2.0 THz). After spin-casting an ultrathin PTAA polymer protective layer (5 nm) on the hybrid perovskite thin film, it was additionally observed that there was no significant effect on the phonon modes. Thus, this novel flexible organic–inorganic hybrid perovskite material is a potential candidate for THz-based applications.

Original languageEnglish
Article number53
JournalNPG Asia Materials
Volume12
Issue number1
DOIs
Publication statusPublished - 1 Dec 2020

Bibliographical note

Publisher Copyright:
© 2020, The Author(s).

Fingerprint

Dive into the research topics of 'Unique phonon modes of a CH3NH3PbBr3 hybrid perovskite film without the influence of defect structures: an attempt toward a novel THz-based application'. Together they form a unique fingerprint.

Cite this