TY - JOUR
T1 - Unlocking Quasi-Solid-State Anode-Free Zinc Metal Batteries Through Robust Bilayer Interphase Engineering
AU - Wang, Tian
AU - Xiao, Ya
AU - Tang, Shaocong
AU - Xiang, Weiwei
AU - Yu, Jae Su
N1 - Publisher Copyright:
© 2025 The Author(s). Advanced Energy Materials published by Wiley-VCH GmbH.
PY - 2025
Y1 - 2025
N2 - Anode-free aqueous zinc (Zn) metal batteries (AFZMBs) possess an optimal battery architecture configuration because no excess Zn source is involved in the charge/discharge processes, rendering it feasible to enhance the energy density of batteries. However, rapid capacity fading due to the unstable anode-side current collector/electrolyte interfacial chemistry, which results in Zn dendrite growth, impedes their practical application, especially in quasi-solid-state AFZMBs. Herein, a robust bilayer interphase design strategy between a gel electrolyte and a copper current collector is proposed to achieve high-energy and stable quasi-solid-state AFZMBs. Utilizing the upper mass transfer layer to regulate rapid Zn ion transport and the lower zincophilic electron transfer layer to induce initial uniform Zn nucleation and balance the surface electric field, uniform dendrite-free Zn deposition and prominent reversibility are achieved. Therefore, the robust bilayer interphase design strategy significantly improves the cycling stability of quasi-solid-state Zn//I2 batteries. Additionally, the fabricated quasi-solid-state AFZMBs employing a pre-intercalated VO2 cathode deliver attractive energy and power densities (186.1 Wh kg−1/470 W kg−1 and 145.3 Wh kg−1/1.74 kW kg−1, based on the active material). Moreover, the successful extension of the bilayer interphase design to flexible AFZMBs offers a promising pathway for the development of wearable electronic devices.
AB - Anode-free aqueous zinc (Zn) metal batteries (AFZMBs) possess an optimal battery architecture configuration because no excess Zn source is involved in the charge/discharge processes, rendering it feasible to enhance the energy density of batteries. However, rapid capacity fading due to the unstable anode-side current collector/electrolyte interfacial chemistry, which results in Zn dendrite growth, impedes their practical application, especially in quasi-solid-state AFZMBs. Herein, a robust bilayer interphase design strategy between a gel electrolyte and a copper current collector is proposed to achieve high-energy and stable quasi-solid-state AFZMBs. Utilizing the upper mass transfer layer to regulate rapid Zn ion transport and the lower zincophilic electron transfer layer to induce initial uniform Zn nucleation and balance the surface electric field, uniform dendrite-free Zn deposition and prominent reversibility are achieved. Therefore, the robust bilayer interphase design strategy significantly improves the cycling stability of quasi-solid-state Zn//I2 batteries. Additionally, the fabricated quasi-solid-state AFZMBs employing a pre-intercalated VO2 cathode deliver attractive energy and power densities (186.1 Wh kg−1/470 W kg−1 and 145.3 Wh kg−1/1.74 kW kg−1, based on the active material). Moreover, the successful extension of the bilayer interphase design to flexible AFZMBs offers a promising pathway for the development of wearable electronic devices.
KW - anode-free zinc metal batteries
KW - bilayer interphase
KW - copper current collector
KW - quasi-solid-state
UR - http://www.scopus.com/inward/record.url?scp=86000247955&partnerID=8YFLogxK
U2 - 10.1002/aenm.202500430
DO - 10.1002/aenm.202500430
M3 - Article
AN - SCOPUS:86000247955
SN - 1614-6832
JO - Advanced Energy Materials
JF - Advanced Energy Materials
ER -