TY - JOUR
T1 - Use of a Phosphatase-Like DT-Diaphorase Label for the Detection of Outer Membrane Vesicles
AU - Ichzan, Andi Muhammad
AU - Lee, Sohee
AU - San Fang, Chiew
AU - Nandhakumar, Ponnusamy
AU - Ha, Hyeri
AU - Joo, Jung Min
AU - Kim, Kwang Sun
AU - Yang, Haesik
N1 - Publisher Copyright:
© 2019 American Chemical Society.
PY - 2019/4/2
Y1 - 2019/4/2
N2 - DT-diaphorase (DT-D) is known to mainly catalyze the two-electron reduction of quinones and nitro(so) compounds. Detection of Gram-negative bacterial outer membrane vesicles (OMVs) that contain pyrogenic lipopolysaccharides (LPSs, also called endotoxins) is required for evaluating the toxic effects of analytical samples. Here, we report that DT-D has a high dephosphorylation activity: DT-D catalyzes reductive dephosphorylation of a phosphate-containing substrate in the presence of NADH. We also report that sensitive and simple OMV detection is possible with a sandwich-type electrochemical immunosensor using DT-D and two identical LPS-binding antibodies as a catalytic label and two sandwich probes, respectively. The absorbance change in a solution containing 4-nitrophenyl phosphate indicates that dephosphorylation occurs in the presence of both DT-D and NADH. Among the three phosphate-containing substrates [4-aminophenyl phosphate, ascorbic acid phosphate, and 1-amino-2-naphthyl phosphate (ANP)] that can be converted into electrochemically active products after dephosphorylation, ANP shows the highest electrochemical signal-to-background ratio, because (i) the dephosphorylation of ANP by DT-D is fast, (ii) the electrochemical oxidation of the dephosphorylated product (1-amino-2-naphthol, AN) is rapid, even at a bare indium-tin oxide electrode, and (iii) two redox cycling processes significantly increase the electrochemical signal. The two redox cycling processes include an electrochemical-enzymatic redox cycling and an electrochemical-chemical redox cycling. The electrochemical signal in a neutral buffer (tris buffer, pH 7.5) is comparable to that in a basic buffer (tris buffer, pH 9.5). When the immunosensor is applied to the detection of OMV from Escherichia coli, the detection limit is found to be 8 ng/mL. This detection strategy is highly promising for the detection of biomaterials, including other extracellular vesicles.
AB - DT-diaphorase (DT-D) is known to mainly catalyze the two-electron reduction of quinones and nitro(so) compounds. Detection of Gram-negative bacterial outer membrane vesicles (OMVs) that contain pyrogenic lipopolysaccharides (LPSs, also called endotoxins) is required for evaluating the toxic effects of analytical samples. Here, we report that DT-D has a high dephosphorylation activity: DT-D catalyzes reductive dephosphorylation of a phosphate-containing substrate in the presence of NADH. We also report that sensitive and simple OMV detection is possible with a sandwich-type electrochemical immunosensor using DT-D and two identical LPS-binding antibodies as a catalytic label and two sandwich probes, respectively. The absorbance change in a solution containing 4-nitrophenyl phosphate indicates that dephosphorylation occurs in the presence of both DT-D and NADH. Among the three phosphate-containing substrates [4-aminophenyl phosphate, ascorbic acid phosphate, and 1-amino-2-naphthyl phosphate (ANP)] that can be converted into electrochemically active products after dephosphorylation, ANP shows the highest electrochemical signal-to-background ratio, because (i) the dephosphorylation of ANP by DT-D is fast, (ii) the electrochemical oxidation of the dephosphorylated product (1-amino-2-naphthol, AN) is rapid, even at a bare indium-tin oxide electrode, and (iii) two redox cycling processes significantly increase the electrochemical signal. The two redox cycling processes include an electrochemical-enzymatic redox cycling and an electrochemical-chemical redox cycling. The electrochemical signal in a neutral buffer (tris buffer, pH 7.5) is comparable to that in a basic buffer (tris buffer, pH 9.5). When the immunosensor is applied to the detection of OMV from Escherichia coli, the detection limit is found to be 8 ng/mL. This detection strategy is highly promising for the detection of biomaterials, including other extracellular vesicles.
UR - http://www.scopus.com/inward/record.url?scp=85063372191&partnerID=8YFLogxK
U2 - 10.1021/acs.analchem.9b00064
DO - 10.1021/acs.analchem.9b00064
M3 - Article
C2 - 30882203
AN - SCOPUS:85063372191
SN - 0003-2700
VL - 91
SP - 4680
EP - 4686
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 7
ER -